7 research outputs found

    SCREENING FOR BIOACTIVES FROM INDIAN MEDICINAL HERBS – A SIMPLISTIC APPROACH FOR ANTIOXIDANT METABOLITES

    Get PDF
    Herbal extracts obtained from 20 Indian medicinal plants were evaluated for their cytoprotectivity on erythrocytes and antioxidant properties. Total phenol content and anti-rhizopus activity were also determined. Results indicated that, out of 20 extracts evaluated, radical scavenging capacity and anti-rhizopus activity were observed in aqueous extract of Ocimum tenuiflorum, Leucas aspera, Terminalia arjuna, Glycyrrhiza glabra and Nyctanthes arbortristis in a dose dependent manner. The total phenolic content was observed to be 1289, 3837, 372, 2831 and 1892 μg GAE/g for O. tenuiflorum, L. aspera, T. arjuna, G. glabra and N. arbortristis respectively. The antioxidant activity correlates with the phenolic content of the extracts. At 1 mg/ml the above extracts showed 98% protection on erythrocyte cell oxidation. These results demonstrate that the cytoprotectivity and antioxidant potency of these extracts could be the basis for their alleged health promoting potential. These herbs could serve as new sources of natural antioxidants or nutraceuticals with potential applications in reducing oxidative stress conditions.Â

    PHYTO-ANTIQUORUMONES: AN HERBAL APPROACH FOR BLOCKING BACTERIAL TRAFFICKING AND PATHOGENESIS

    Get PDF
    Over centuries, plants are the richest resource of curative drugs as cited in folklore, traditional and modern medicinal systems and are been used as nutraceuticals, functional food supplements and in pharmaceuticals. Phytochemicals have exhibited beneficial effects against human acute and chronic ailments caused due to microbial pathogens. In recent years, phytochemicals and their derivatives have been extensively used as potent antimicrobials in humans and livestock due to their chemical stability, high bioavailability, low-molecular mass, safe consumption without any side-effect as seen in many antibiotic regimes. These phytocompounds have also been highlighted to function as Quorum Sensing Inhibitors (QSI) or antiquorumones in blocking bacterial pathogenesis preventing their regulatory mechanism and expression of specific set of virulence genes or cascades. However, the role of phytochemicals as QSI has been poorly identified but many of which remain unexplored. Therefore, this review summarizes most of the current scientific contributions focused on the use of plant phytochemicals as antiquorumones, highlighting the significance of plant derived molecules as bacterial inhibitors with larger emphasis on the mechanistic action of biofilm formation and quorum signaling networks mainly N-acylhomoserine lactones (AHLs), autoinducer-2 (AI-2) communications and their attributes in modulating the host immune response. A critical understanding of this complex trio-interaction between humans, microbes and phytochemicals has to be well explored, to exploit the usefulness of these metabolites ultimately paving newer paths for herbal drug discovery and their potential targets leading towards a better quality of life and human welfare.Â

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    3rd National Conference on Image Processing, Computing, Communication, Networking and Data Analytics

    No full text
    This volume contains contributed articles presented in the conference NCICCNDA 2018, organized by the Department of Computer Science and Engineering, GSSS Institute of Engineering and Technology for Women, Mysore, Karnataka (India) on 28th April 2018

    TEQIP - III Sponsored First International Conference on Innovations and Challenges in Computing, Analytics and Security

    No full text
    This book contains abstracts of the various research papers of the academic & research community presented at the International Conference on Innovations and Challenges in Computing, Analytics and Security (ICICCAS-2020). ICICCAS-2020 has served as a platform for researchers, professionals to meet and exchange ideas on computing, data analytics, and security. The conference has invited papers in seven main tracks of Data Science, Networking Technologies, Sequential, Parallel, Distributed and Cloud Computing, Advances in Software Engineering, Multimedia, Image Processing, and Embedded Systems, Security and Privacy, Special Track (IoT, Smart Technologies and Green Engineering). The Technical and Advisory Committee Members were from various countries that have rich Research and Academic experience. Conference Title: TEQIP - III Sponsored First International Conference on Innovations and Challenges in Computing, Analytics and SecurityConference Acronym: ICICCAS-2020Conference Date: 29-30 July 2020Conference Location: Pondicherry Engineering College, Puducherry – 605014, India (Virtual Mode)Conference Organizer: Department of Computer Science and Engineering, Pondicherry Engineering College, Puducherry, India.Conference Sponsor: TEQIP-III NPIU (A Unit of the Ministry of Human Resource Development, India)

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore