89 research outputs found

    Editorial

    Get PDF

    Editorial

    Get PDF

    Editorial

    Get PDF

    Editorial

    Get PDF

    Ligand-Induced Movements of Inner Transmembrane Helices of Glut1 Revealed by Chemical Cross-Linking of Di-Cysteine Mutants

    Get PDF
    The relative orientation and proximity of the pseudo-symmetrical inner transmembrane helical pairs 5/8 and 2/11 of Glut1 were analyzed by chemical cross-linking of di-cysteine mutants. Thirteen functional di-cysteine mutants were created from a C-less Glut1 reporter construct containing cysteine substitutions in helices 5 and 8 or helices 2 and 11. The mutants were expressed in Xenopus oocytes and the sensitivity of each mutant to intramolecular cross-linking by two homobifunctional thiol-specific reagents was ascertained by protease cleavage followed by immunoblot analysis. Five of 9 mutants with cysteine residues predicted to lie in close proximity to each other were susceptible to cross-linking by one or both reagents. None of 4 mutants with cysteine substitutions predicted to lie on opposite faces of their respective helices was susceptible to cross-linking. Additionally, the cross-linking of a di-cysteine pair (A70C/M420C, helices 2/11) predicted to lie near the exoplasmic face of the membrane was stimulated by ethylidene glucose, a non-transported glucose analog that preferentially binds to the exofacial substrate-binding site, suggesting that the binding of this ligand stimulates the closure of helices at the exoplasmic face of the membrane. In contrast, the cross-linking of a second di-cysteine pair (T158C/L325, helices 5/8), predicted to lie near the cytoplasmic face of the membrane, was stimulated by cytochalasin B, a glucose transport inhibitor that competitively inhibits substrate efflux, suggesting that this compound recruits the transporter to a conformational state in which closure of inner helices occurs at the cytoplasmic face of the membrane. This observation provides a structural explanation for the competitive inhibition of substrate efflux by cytochalasin B. These data indicate that the binding of competitive inhibitors of glucose efflux or influx induce occluded states in the transporter in which substrate is excluded from the exofacial or endofacial binding site

    Cationic Amino Acid Transporters and Salmonella Typhimurium ArgT Collectively Regulate Arginine Availability towards Intracellular Salmonella Growth

    Get PDF
    Cationic amino acid transporters (mCAT1 and mCAT2B) regulate the arginine availability in macrophages. How in the infected cell a pathogen can alter the arginine metabolism of the host remains to be understood. We reveal here a novel mechanism by which Salmonella exploit mCAT1 and mCAT2B to acquire host arginine towards its own intracellular growth within antigen presenting cells. We demonstrate that Salmonella infected bone marrow derived macrophages and dendritic cells show enhanced arginine uptake and increased expression of mCAT1 and mCAT2B. We show that the mCAT1 transporter is in close proximity to Salmonella containing vacuole (SCV) specifically by live intracellular Salmonella in order to access the macrophage cytosolic arginine pool. Further, Lysosome associated membrane protein 1, a marker of SCV, also was found to colocalize with mCAT1 in the Salmonella infected cell. The intra vacuolar Salmonella then acquire the host arginine via its own arginine transporter, ArgT for growth. The argT knockout strain was unable to acquire host arginine and was attenuated in growth in both macrophages and in mice model of infection. Together, these data reveal survival strategies by which virulent Salmonella adapt to the harsh conditions prevailing in the infected host cells

    Identification of Colorectal Cancer Related Genes with mRMR and Shortest Path in Protein-Protein Interaction Network

    Get PDF
    One of the most important and challenging problems in biomedicine and genomics is how to identify the disease genes. In this study, we developed a computational method to identify colorectal cancer-related genes based on (i) the gene expression profiles, and (ii) the shortest path analysis of functional protein association networks. The former has been used to select differentially expressed genes as disease genes for quite a long time, while the latter has been widely used to study the mechanism of diseases. With the existing protein-protein interaction data from STRING (Search Tool for the Retrieval of Interacting Genes), a weighted functional protein association network was constructed. By means of the mRMR (Maximum Relevance Minimum Redundancy) approach, six genes were identified that can distinguish the colorectal tumors and normal adjacent colonic tissues from their gene expression profiles. Meanwhile, according to the shortest path approach, we further found an additional 35 genes, of which some have been reported to be relevant to colorectal cancer and some are very likely to be relevant to it. Interestingly, the genes we identified from both the gene expression profiles and the functional protein association network have more cancer genes than the genes identified from the gene expression profiles alone. Besides, these genes also had greater functional similarity with the reported colorectal cancer genes than the genes identified from the gene expression profiles alone. All these indicate that our method as presented in this paper is quite promising. The method may become a useful tool, or at least plays a complementary role to the existing method, for identifying colorectal cancer genes. It has not escaped our notice that the method can be applied to identify the genes of other diseases as well
    corecore