6 research outputs found

    Bleu Arabia: Palaeolithic and underwater survey in SW Saudi Arabia and the role of coasts in Pleistocene dispersals

    Get PDF
    The role of coastal regions and coastlines in the dispersal of human populations from Africa and across the globe has been highlighted by the recent polarisation between coastal and interior models. The debate has been clouded by the use of the single term ‘coastal dispersal’ to embrace what is in fact a wide spectrum of possibilities, ranging from seafaring populations who spend most of their time at sea living off marine resources, to land-based populations in coastal regions with little or no reliance on marine foods. An additional complicating factor is the fact of Pleistocene and early Holocene sea-level change, which exposed an extensive coastal region that is now submerged, and may have afforded very different conditions from the modern coastal environment. We examine these factors in the Arabian context and use the term ‘Blue’ to draw attention to the fertile coastal rim of the Arabian Peninsula, and to the now submerged offshore landscape, which is especially extensive in some regions. We further emphasise that the attractions of the coastal rim are a product of two quite different factors, ecological diversity and abundant water on land, which have created persistently ‘Green’ conditions throughout the vagaries of Pleistocene climate change in some coastal regions, especially along parts of the western Arabian escarpment, and potentially productive marine environments around its coastline, which include some of the most fertile in the world. We examine the interplay of these factors in the Southwest region of Saudi Arabia and the southern Red Sea, and summarise some of the results of recent DISPERSE field investigations, including survey for Palaeolithic sites on the mainland, and underwater survey of the continental shelf in the vicinity of the Farasan Islands. We conclude that coastlines are neither uniformly attractive nor uniformly marginal to human dispersal, that they offer diverse opportunities that were spatially and temporally variable at scales from the local to the continental, and that investigating Blue Arabia in relation to its episodically Green interior is a key factor in the fuller understanding of long-term human population dynamics within Arabia and their global implications

    Ligand-Induced Movements of Inner Transmembrane Helices of Glut1 Revealed by Chemical Cross-Linking of Di-Cysteine Mutants

    Get PDF
    The relative orientation and proximity of the pseudo-symmetrical inner transmembrane helical pairs 5/8 and 2/11 of Glut1 were analyzed by chemical cross-linking of di-cysteine mutants. Thirteen functional di-cysteine mutants were created from a C-less Glut1 reporter construct containing cysteine substitutions in helices 5 and 8 or helices 2 and 11. The mutants were expressed in Xenopus oocytes and the sensitivity of each mutant to intramolecular cross-linking by two homobifunctional thiol-specific reagents was ascertained by protease cleavage followed by immunoblot analysis. Five of 9 mutants with cysteine residues predicted to lie in close proximity to each other were susceptible to cross-linking by one or both reagents. None of 4 mutants with cysteine substitutions predicted to lie on opposite faces of their respective helices was susceptible to cross-linking. Additionally, the cross-linking of a di-cysteine pair (A70C/M420C, helices 2/11) predicted to lie near the exoplasmic face of the membrane was stimulated by ethylidene glucose, a non-transported glucose analog that preferentially binds to the exofacial substrate-binding site, suggesting that the binding of this ligand stimulates the closure of helices at the exoplasmic face of the membrane. In contrast, the cross-linking of a second di-cysteine pair (T158C/L325, helices 5/8), predicted to lie near the cytoplasmic face of the membrane, was stimulated by cytochalasin B, a glucose transport inhibitor that competitively inhibits substrate efflux, suggesting that this compound recruits the transporter to a conformational state in which closure of inner helices occurs at the cytoplasmic face of the membrane. This observation provides a structural explanation for the competitive inhibition of substrate efflux by cytochalasin B. These data indicate that the binding of competitive inhibitors of glucose efflux or influx induce occluded states in the transporter in which substrate is excluded from the exofacial or endofacial binding site

    Competing views on cancer

    No full text

    Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood-brain barrier.

    No full text
    This review considers efflux of substances from brain parenchyma quantified as values of clearances (CL, stated in µL g-1 min-1). Total clearance of a substance is the sum of clearance values for all available routes including perivascular pathways and the blood-brain barrier. Perivascular efflux contributes to the clearance of all water-soluble substances. Substances leaving via the perivascular routes may enter cerebrospinal fluid (CSF) or lymph. These routes are also involved in entry to the parenchyma from CSF. However, evidence demonstrating net fluid flow inwards along arteries and then outwards along veins (the glymphatic hypothesis) is still lacking. CLperivascular, that via perivascular routes, has been measured by following the fate of exogenously applied labelled tracer amounts of sucrose, inulin or serum albumin, which are not metabolized or eliminated across the blood-brain barrier. With these substances values of total CL ≅ 1 have been measured. Substances that are eliminated at least partly by other routes, i.e. across the blood-brain barrier, have higher total CL values. Substances crossing the blood-brain barrier may do so by passive, non-specific means with CLblood-brain barrier values ranging from  1000 for water and CO2. CLblood-brain barrier values for many small solutes are predictable from their oil/water partition and molecular weight. Transporters specific for glucose, lactate and many polar substrates facilitate efflux across the blood-brain barrier producing CLblood-brain barrier values > 50. The principal route for movement of Na+ and Cl- ions across the blood-brain barrier is probably paracellular through tight junctions between the brain endothelial cells producing CLblood-brain barrier values ~ 1. There are large fluxes of amino acids into and out of the brain across the blood-brain barrier but only small net fluxes have been observed suggesting substantial reuse of essential amino acids and α-ketoacids within the brain. Amyloid-β efflux, which is measurably faster than efflux of inulin, is primarily across the blood-brain barrier. Amyloid-β also leaves the brain parenchyma via perivascular efflux and this may be important as the route by which amyloid-β reaches arterial walls resulting in cerebral amyloid angiopathy

    Elimination of substances from the brain parenchyma: efflux via perivascular pathways and via the blood–brain barrier

    No full text
    corecore