1,407 research outputs found

    Universal zero-frequency Raman slope in a d-wave superconductor

    Full text link
    It is known that for an unconventional superconductor with nodes in the gap, the in-plane microwave or dc conductivity saturates at low temperatures to a universal value independent of the impurity concentration. We demonstrate that a similar feature can be accessed using channel-dependent Raman scattering. It is found that, for a dx2−y2d_{x^2-y^2}-wave superconductor, the slope of low-temperature Raman intensity at zero frequency is universal in the A1gA_{1g} and B2gB_{2g} channels, but not in the B1gB_{1g} channel. Moreover, as opposed to the microwave conductivity, universal Raman slopes are sensitive not only to the existence of a node, but also to different pairing states and should allow one to distinguish between such pairing states.Comment: 5 page

    Collective Spin Fluctuation Mode and Raman Scattering in Superconducting Cuprates

    Full text link
    Although the low frequency electronic Raman response in the superconducting state of the cuprates can be largely understood in terms of a d-wave energy gap, a long standing problem has been an explanation for the spectra observed in the A1gA_{1g} polarization orientations. We present calculations which suggest that the peak position of the observed A1gA_{1g} spectra is due to a collective spin fluctuation mode.Comment: 4 pages, 5 eps figure

    Symmetry dependence of phonon lineshapes in superconductors with anisotropic gaps

    Full text link
    The temperature dependence below TcT_{c} of the lineshape of optical phonons of different symmetry as seen in Raman scattering is investigated for superconductors with anisotropic energy gaps. It is shown that the symmetry of the electron-phonon vertex produces non-trivial couplings to an anisotropic energy gap which leads to unique changes in the phonon lineshape for phonons of different symmetry. The phonon lineshape is calculated in detail for B1gB_{1g} and A1gA_{1g} phonons in a superconductor with dx2−y2d_{x^{2}-y^{2}} pairing symmetry. The role of satellite peaks generated by the electron-phonon coupling are also addressed. The theory accounts for the substantial phonon narrowing of the B1gB_{1g} phonon, while narrowing of the A1gA_{1g} phonon which is indistinguishable from the normal state is shown, in agreement with recent measurements on BSCCO.Comment: 15 pages (3 Figures available upon request), Revtex, 1

    Time-resolved photoemission of correlated electrons driven out of equilibrium

    Get PDF
    We describe the temporal evolution of the time-resolved photoemission response of the spinless Falicov-Kimball model driven out of equilibrium by strong applied fields. The model is one of the few possessing a metal-insulator transition and admitting an exact solution in the time domain. The nonequilibrium dynamics, evaluated using an extension of dynamical mean-field theory, show how the driven system differs from two common viewpoints - a quasiequilibrium system at an elevated effective temperature (the "hot" electron model) or a rapid interaction quench ("melting" of the Mott gap) - due to the rearrangement of electronic states and redistribution of spectral weight. The results demonstrate the inherent trade-off between energy and time resolution accompanying the finite width probe pulses, characteristic of those employed in pump-probe time-domain experiments, which can be used to focus attention on different aspects of the dynamics near the transition.Comment: Original: 5 pages, 3 figures; Replaced: updated text and figures, 5 pages, 4 figure
    • …
    corecore