1,314 research outputs found
Symmetry dependence of phonon lineshapes in superconductors with anisotropic gaps
The temperature dependence below of the lineshape of optical phonons
of different symmetry as seen in Raman scattering is investigated for
superconductors with anisotropic energy gaps. It is shown that the symmetry of
the electron-phonon vertex produces non-trivial couplings to an anisotropic
energy gap which leads to unique changes in the phonon lineshape for phonons of
different symmetry. The phonon lineshape is calculated in detail for
and phonons in a superconductor with pairing
symmetry. The role of satellite peaks generated by the electron-phonon coupling
are also addressed. The theory accounts for the substantial phonon narrowing of
the phonon, while narrowing of the phonon which is
indistinguishable from the normal state is shown, in agreement with recent
measurements on BSCCO.Comment: 15 pages (3 Figures available upon request), Revtex, 1
Universal zero-frequency Raman slope in a d-wave superconductor
It is known that for an unconventional superconductor with nodes in the gap,
the in-plane microwave or dc conductivity saturates at low temperatures to a
universal value independent of the impurity concentration. We demonstrate that
a similar feature can be accessed using channel-dependent Raman scattering. It
is found that, for a -wave superconductor, the slope of
low-temperature Raman intensity at zero frequency is universal in the
and channels, but not in the channel. Moreover, as opposed to
the microwave conductivity, universal Raman slopes are sensitive not only to
the existence of a node, but also to different pairing states and should allow
one to distinguish between such pairing states.Comment: 5 page
Momentum dependent light scattering in insulating cuprates
We investigate the problem of inelastic x-ray scattering in the spin
Heisenberg model on the square lattice. We first derive a momentum dependent
scattering operator for the and polarization geometries. On
the basis of a spin-wave analysis, including magnon-magnon interactions and
exact-diagonalizations, we determine the qualitative shape of the spectra. We
argue that our results may be relevant to help interpret inelastic x-ray
scattering experiments in the antiferromagnetic phase of the cuprates.Comment: 5 pages, 3 figures, to appear in PR
Two Distinct Electronic Contributions in the Fully Symmetric Raman Response of High Cuprates
We show by non resonant effect in HgBaCuO (Hg-1201)and by Zn
substitutions in YBaCuO (Y-123) compounds that the fully
symmetric Raman spectrum has two distinct electronic contributions. The
A response consists in the superconducting pair breaking peak at the
2 energy and a collective mode close to the magnetic resonance energy.
These experimental results reconcile the \textit{d-wave} model to the A
Raman response function in so far as a collective mode that is distinct from
the pair breaking peak is present in the A channel.Comment: 4 pages, 2 figure
Resonant Enhancement of Inelastic Light Scattering in Strongly Correlated Materials
We use dynamical mean field theory to find an exact solution for inelastic
light scattering in strongly correlated materials such as those near a
quantum-critical metal-insulator transition. We evaluate the results for
(Raman) scattering and find that resonant effects can be quite
large, and yield a triple resonance, a significant enhancement of nonresonant
scattering peaks, a joint resonance of both peaks when the incident photon
frequency is on the order of , and the appearance of an isosbestic point in
all symmetry channels for an intermediate range of incident photon frequencies.Comment: 5 pages RevTex, 4 Figures ep
Optical sum rules that relate to the potential energy of strongly correlated systems
A class of sum rules for inelastic light scattering is developed. We show
that the first moment of the non-resonant response provides information about
the potential energy in strongly correlated systems. The polarization
dependence of the sum rules provide information about the electronic
excitations in different regions of the Brillouin zone. We determine the sum
rule for the Falicov-Kimball model, which possesses a metal-insulator
transition, and compare our results to the light scattering experiments in
SmB_6.Comment: (5 pages, 3 figures, typeset in ReVTeX
- …