35 research outputs found

    Phase 4 Pharmacovigilance Trial of Paromomycin Injection for the Treatment of Visceral Leishmaniasis in India

    Get PDF
    Background. A phase 3 study demonstrated the safety and efficacy of paromomycin (paromomycin IM injection) for treatment of VL in an inpatient setting. Methods. This phase 4 study was conducted to assess the safety and efficacy of paromomycin in children and adults in an outpatient setting in Bihar, India. Results. This study enrolled 506 adult and pediatric patients. Of the 494 patients in the intent-to-treat (ITT) population, 98% received a full course of treatment. The overall study completion rate was 94% (462/494) for the ITT population and 96% (461/479) for the efficacy-evaluable (EE) population. Initial clinical cure was 99.6%, and final clinical cure 6 months after treatment was 94.2%. Grade 3 or 4 adverse events occurred in 5% of patients; events with a frequency of ≥1% were increases in alanine aminotransferase and aspartate aminotransferase. Conclusions. This study confirms the safety and efficacy of paromomycin to treat VL in an outpatient setting

    Use of thiopurines in inflammatory bowel disease : an update

    Get PDF
    Inflammatory bowel disease (IBD), once considered a disease of the Western hemisphere, has emerged as a global disease. As the disease prevalence is on a steady rise, management of IBD has come under the spotlight. 5-Aminosalicylates, corticosteroids, immunosuppressive agents and biologics are the backbone of treatment of IBD. With the advent of biologics and small molecules, the need for surgery and hospitalization has decreased. However, economic viability and acceptability is an important determinant of local prescription patterns. Nearly one-third of the patients in West receive biologics as the first/initial therapy. The scenario is different in developing countries where biologics are used only in a small proportion of patients with IBD. Increased risk of reactivation of tuberculosis and high cost of the therapy are limitations to their use. Thiopurines hence become critical for optimal management of patients with IBD in these regions. However, approximately one-third of patients are intolerant or develop adverse effects with their use. This has led to suboptimal use of thiopurines in clinical practice. This review article discusses the clinical aspects of thiopurine use in patients with IBD with the aim of optimizing their use to full therapeutic potential.Peer reviewe

    Ectopia cordis associated with Cantrell′s pentalogy

    No full text
    Cantrell′s pentalogy with ectopia cordis is an extremely rare and lethal congenital anomaly, with a reported incidence of 1:100000 births in developed countries. We report a neonate who presented with ectopia cordis along with cleft lower sternum, upper abdominal wall defect, ectopic umbilicus, diaphragmatic defect, and interventricular septal defect. The neonate had respiratory distress with peripheral cyanosis and died because of acidosis and electrolyte imbalance before surgical intervention could be undertaken. We discuss the case and present a brief review of literature and of embryogenesi

    Ectopia cordis associated with Cantrell's pentalogy

    No full text
    Cantrell's pentalogy with ectopia cordis is an extremely rare and lethal congenital anomaly, with a reported incidence of 1:100000 births in developed countries. We report a neonate who presented with ectopia cordis along with cleft lower sternum, upper abdominal wall defect, ectopic umbilicus, diaphragmatic defect, and interventricular septal defect. The neonate had respiratory distress with peripheral cyanosis and died because of acidosis and electrolyte imbalance before surgical intervention could be undertaken. We discuss the case and present a brief review of literature and of embryogenesi

    Experimental investigation and optimization of cutting parameters during dry turning process of copper alloy

    No full text
    Abstract Increasing the quality and productivity of machined components are the main issues of machining operations in metalworking industries. The copper alloys CuZr and CuCrZr generally find applications for current-carrying structural components, seam welder wheels, shafts, and bearings flash. The manufacturing of these components is still facing challenges in the form of machining process characteristics. One of the most common machining operations for removing material is turning that produces reasonably good surface finish quality, which is influenced by different factors (speed of cut, rate of feed, tool geometry, cutting fluid, cutting tool, etc.). This research has focused on experimental study and optimization of the cutting parameters viz. cutting speed, depth of cut, and feed, for best surface finish, material removal rate, tool tip temperature as well as surface morphology during dry turning of C15000 and C18150 copper alloy using High-Speed Steel (HSS) tool The plan and design of experiment has been performed through orthogonal Taguchi L9. array. The optimum cutting settings were discovered by using the Taguchi technique and using the performance index by applying a Grey Relational Grade (GRG). The best cutting parameters for both materials were a cutting speed 1200 rpm, feed rate 0.06 mm/rev, and depth of cut 1.25 mm. The optimum factors obtained from GRA for all responses (surface roughness, MRR, and tool temperature) at the best level of cutting parameters are the same for both materials. These cutting parameters values yielded the experimental result for each response like surface roughness, MRR, and tool tip temperature (2.5 µm,12,475 mm3/min, and 74 °C) for grade C15000 whereas (2.39 µm, 2590mm3/min and 68 °C) for grade C18150. The optimization of cutting parameters plays a vital role in the improvement of surface finish which minimizes mechanical failures caused by wear, corrosion, and thereby increasing the productivity of the products. This investigation is expected to help all researchers working in this area of applications

    Chemical Composition and Extraction of Micro Crystalline Cellulose from Outer Skin Isolated Coffee Husk

    No full text
    Coffee husk (CH) is a sustainable and abundantly available cellulosic waste material. Its fiber consists of cellulose as the major structural part which leads to potential utilization for the manufacturing of microcrystalline cellulose (MCC) products that can be utilized for different industrial applications. In the present study, chemical composition of outer skin-isolated coffee husk was determined and sequential treatments of various untreated (UT) sample, ethanol—toluene treated sample through dewaxed (DW) treatment, sodium hydroxide (NaOH)—treated sample through alkali (AT) treatment, and sulfuric acid (H2SO4)—treated sample through bleaching (BL) treatment have been carried out. The Micro Crystalline Cellulose (MCC) has been extracted through hydrogen peroxide (H2O2) after BL treatment. The BL treatment for MCC extraction process was conducted without chlorine and additional harsh acid treatment, respectively. The characterization of chemically treated samples was carried out to investigate their morphological, physico-chemistry, and thermal behavior through a scanning electron microscope (SEM), Fourier transform infrared—ray (FTIR), X-ray diffraction (XRD), thermo gravimetric analysis (TGA), and differential temperature analyzer (DTA). From the chemical composition analysis; the cellulose, hemicellulose, lignin, and extractive content were determined and its values were (52.9%), (12.5%), (24.3%), and (9.4%), respectively. In the morphological examination, the great untreated (UT) fiber sample was greatly reduced into a micro-sized BL sample, revealing that (from FTIR analysis) the lignin and hemicellulose contents were greatly removed during chemical treatments and the presence of a micro crystalline cellulose region with 54.7% yield. Also, the sample AT and BL showed the lowest amorphous region in X-RD due to the removal of hemicellulose and lignin. The highest crystallinity index has been determined for the BL sample, i.e., 89.9%. Additionally, the thermal analysis shows that the AT and BL sample has great thermal stability than other (UT and DW) samples at high temperature. Therefore, the outer skin separated coffee husk was prepared from agricultural waste was subjected to eco-friendly chemical treatments to yield MCC. Thus, the extracted MCC is expected to be reliable for replacing other plant materials for the production of crystalline nanomaterial and reinforcing constituent for the fabrication of bio composite

    Experimental investigation of thermal storage integrated indirect solar cooker with and without reflectors

    No full text
    Environmental degradation, harmful gas emissions, and the increase in prices of fuel and electricity are the main driving forces behind the need for more effective utilization of renewable energy. In the present study, indirect solar cooking system with a flat plate collector integrated with a phase change material was designed, constructed and experimentally tested. Comparative study was conducted on the performance of the solar cooker with and without reflectors. Four plane reflectors on each side of the collector were used to enhance the solar insolation falling on the collector while stearic acid is used as PCM in the thermal storage unit. Daily average enhancement of 42.3% on the reflected solar radiation was found with four reflectors. The result showed that the maximum average absorber plate temperature, maximum outlet water temperature, maximum energy and exergy efficiency of FPC with and without reflectors are found to be 130 °C, 103.65 °C , 79%, and 48% and 92 °C, 71 °C, 63%, and 42% respectively.The overall system efficiency of the indirect solar cooker was found to be 19.04%. The utilization efficiency and characteristic boiling time of the cooker was found to be 22.3% and 15.7 min/kg

    Optimization of porosity behavior of hybrid reinforced titanium metal matrix composite through RSM, ANN, and GA for multi-objective parameters

    No full text
    Abstract Titanium matrix composites (TMCs) have high specific strength and stiffness, and high-temperature TMCs can reduce weight by up to 50% when compared with monolithic super alloys while preserving equal stiffness and strength in jet engine systems for propulsion. The purpose of this work examines the use of mathematical models and learning approaches to optimize response such as porosity and control variables in synthesized hybrid titanium metal matrix composites (HTMMCs) reinforced by B4C-SiC-MoS2-ZrO2. To further understand the impacts of process factors on porosity reduction, the study employs methodologies such as the response surface methodology (RSM), integrated artificial neural networks (ANN), and genetic algorithm (GA). The findings indicate that these strategies have the potential to contribute to the industry. The optimal combination of 7.5wt.% SiC, 7.5wt.% B4C, 7.5wt.% ZrO2, 4wt.% MoS2, and 73.5wt.% Ti compositions was determined utilizing process factors such as milling period (6h), compaction pressure (50MPa), compact duration (50min), sintering temperature (1200°C), and sintering time (2h) as compared to pure Ti grade 5. The mechanical properties of the optimum combination of reinforcement weight percentage and process parameters resulted in a minimum porosity of 0.118%, density of 4.36gcm3, and micro-hardness of 63.4HRC boosted by 1.76%, and compressive strength of 2500MPa increased by 2.6%. In addition, these HTMMCs had a minimal wear rate of 0.176mm3/Nm and a corrosion resistance rate of 2.15×10-4mmpy. The investigation result analysis discovered that the RSM and combined ANN-GA models considerably enhanced the forecasting of multidimensional interaction difficulties in composite material production that were highly statistically connected, with R 2 values of 0.9552 and 0.97984. The ANN-GA model provided a 95% confidence range for porosity predictions, which increased the production use of titanium-based particle composites. Furthermore, HMMCs can be utilized in the automotive and aviation industries with enhanced corrosion and wear resistance

    AZ31-Mg metal matrix composite in metallurgical and testing approaches

    No full text
    The objective of this research is to experimentally investigate the metallurgical, mechanical, and tribological behavior of Mo S 2 , SiC, and Zr O 2 reinforced AZ31 magnesium metal matrix composite (MMC) fabricated via powder metallurgy process. Accordingly, the mixing of the powders was carried out through ball milling operation at various times with constant speeds. The compaction of the milled powder was carried out on hydraulic press at various compaction pressures. The improvement of the wear resistance performance at 10 and 5 vol.% SiC were revealed around 12.9% and 25.8%. The fracture mechanisms of the optimal specimen resulting from the compression test were studied under SEM observation and it revealed that both ductile and brittle fractures occurred. The results from the confirmation test revealed an improvement of 2.04 g/cm 3 , 13%, 110.35 MPa, and 1293.399 MPa for actual density, porosity, ultimate strength, and hardness, respectively. The uniform nature of particle distribution was observed in SEM micrograph under investigation of the microstructure of the sample. The average particle size of the sample was also obtained around 809.14 nm. The proposed material is expected to be useful for various automotive and aerospace applications precisely for pistons and wings of airplane in aerospace
    corecore