61 research outputs found

    The lower main sequence of stars in the solar neighborhood: Model predictions versus observation

    Full text link
    We have used the Simbad database and VizieR catalogue access tools to construct the observational color-absolute magnitude diagrams of nearby K-M dwarfs with precise Hipparcos parallaxes (\sigma_\pi/\pi < 0.05). Particular attention has been paid to removing unresolved double/multiple and variable stars. In addition to archival data, we have made use of nearly 2000 new radial-velocity measurements of K-M dwarfs to identify spectroscopic binary candidates. The main sequences, cleaned from unresolved binaries, variable stars, and old population stars which can also widen the sequence due to their presumably lower metallicity, were compared to available solar-metallicity models. Significant ofsets of most of the model main-sequence lines are seen with respect to observational data, especially for the lower-mass stars. Only the location and slope of the Victoria-Regina and, partly, BaSTI isochrones match the data quite well.Comment: Submitted to JENAM-2011 SpS3 (Saint Petersburg, July 4-8, 2011) Proceeding

    Few-nucleon systems in translationally invariant harmonic oscillator basis

    Get PDF
    We present a translationally invariant formulation of the no-core shell model approach for few-nucleon systems. We discuss a general method of antisymmetrization of the harmonic-oscillator basis depending on Jacobi coordinates. The use of a translationally invariant basis allows us to employ larger model spaces than in traditional shell-model calculations. Moreover, in addition to two-body effective interactions, three- or higher-body effective interactions as well as real three-body interactions can be utilized. In the present study we apply the formalism to solve three and four nucleon systems interacting by the CD-Bonn nucleon-nucleon potential. Results of ground-state as well as excited-state energies, rms radii and magnetic moments are discussed. In addition, we compare charge form factor results obtained using the CD-Bonn and Argonne V8' NN potentials.Comment: 25 pages. RevTex. 13 Postscript figure

    Bioengineering bacterial encapsulin nanocompartments as targeted drug delivery system

    Get PDF
    The development of Drug Delivery Systems (DDS) has led to increasingly efficient therapies for the treatment and detection of various diseases. DDS use a range of nanoscale delivery platforms produced from polymeric of inorganic materials, such as micelles, and metal and polymeric nanoparticles, but their variant chemical composition make alterations to their size, shape, or structures inherently complex. Genetically encoded protein nanocages are highly promising DDS candidates because of their modular composition, ease of recombinant production in a range of hosts, control over assembly and loading of cargo molecules and biodegradability. One example of naturally occurring nanocompartments are encapsulins, recently discovered bacterial organelles that have been shown to be reprogrammable as nanobioreactors and vaccine candidates. Here we report the design and application of a targeted DDS platform based on the Thermotoga maritima encapsulin reprogrammed to display an antibody mimic protein called Designed Ankyrin repeat protein (DARPin) on the outer surface and to encapsulate a cytotoxic payload. The DARPin9.29 chosen in this study specifically binds to human epidermal growth factor receptor 2 (HER2) on breast cancer cells, as demonstrated in an in vitro cell culture model. The encapsulin-based DDS is assembled in one step in vivo by co-expressing the encapsulin-DARPin9.29 fusion protein with an engineered flavin-binding protein mini-singlet oxygen generator (MiniSOG), from a single plasmid in Escherichia coli. Purified encapsulin-DARPin_miniSOG nanocompartments bind specifically to HER2 positive breast cancer cells and trigger apoptosis, indicating that the system is functional and specific. The DDS is modular and has the potential to form the basis of a multi-receptor targeted system by utilising the DARPin screening libraries, allowing use of new DARPins of known specificities, and through the proven flexibility of the encapsulin cargo loading mechanism, allowing selection of cargo proteins of choice

    Partner groups and quantum motion algebras

    No full text
    In this paper an extension of formalism of partner groups is proposed. The partner groups as an algebraic tool for description of laboratory and intrinsic variables are shortly introduced. A natural generalisation of partner groups is recognized as the Quantum Motion Algebra. This algebra is based on a group of motions G of a given quantum system. An example of the limiting case of of the state space L 2 (G,dμ(g)) is also considered. © 2019 Published under licence by IOP Publishing Ltd

    Radial velocities of K–M dwarfs and local stellar kinematics

    No full text
    Aims. The goal of this paper is to present complete radial-velocity data for the spectroscopically selected McCormick sample of nearby K-M dwarfs and, based on these and supplementary data, to determine the space-velocity distributions of late-type stars in the solar neighborhood. Methods. We analyzed nearly 3300 measurements of radial velocities for 1049 K-M dwarfs, that we obtained during the past decade with a CORAVEL-type instrument, with a primary emphasis on detecting and eliminating from kinematic calculations the spectroscopic binaries and binary candidates. Combining radial-velocity data with HIPPARCOS/Tycho-2 astrometry we calculated the space-velocity components and parameters of the galactic orbits in a three-component model potential for the stars in the sample, that we use for kinematical analysis and for the identification of possible candidate members of nearby stellar kinematic groups. Results. We present the catalog of our observations of radial velocities for 959 stars which are not suspected of velocity variability, along with the catalog of U, V, W velocities and Galactic orbital parameters for a total of 1088 K-M stars which are used in the present kinematic analysis. Of these, 146 stars were identified as possible candidate members of the known nearby kinematic groups and suspected subgroups. The distributions of space-velocity components, orbital eccentricities, and maximum distances from the Galactic plane are consistent with the presence of young, intermediate-age and old populations of the thin disk and a small fraction (similar to 3%) of stars with the thick disk kinematics. The kinematic structure gives evidence that the bulk of K-M type stars in the immediate solar vicinity represents a dynamically relaxed stellar population. The star MCC 869 is found to be on a retrograde Galactic orbit (V = -262 km s(-1)) of low inclination (4 degrees) and can be a member of stellar stream of some dissolved structure. The Sun's velocity with respect to the Local Standard of Rest, derived from the distributions of space-velocity components, is (U-circle dot, V-circle dot, W-circle dot) = (9.0 +/- 1.4, 13.1 +/- 0.6, 7.2 +/- 0.8) km s(-1). The radial solar motion derived via the Stromberg's relation, V-circle dot = 14.2 +/- 0.8 km s(-1), agrees within the errors with the value obtained directly from the V distribution of stars on nearly circular orbits.Research Council of Lithuania [MIP-132/2010]Open access journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Partner groups and quantum motion algebras

    No full text
    The 32nd International Colloquium on Group Theoretical Methods in Physics (Group32) 9–13 July 2018, Prague, Czech Republic. Article no. 012088In this paper an extension of formalism of partner groups is proposed. The partner groups as an algebraic tool for description of laboratory and intrinsic variables are shortly introduced. A natural generalisation of partner groups is recognized as the Quantum Motion Algebra. This algebra is based on a group of motions G of a given quantum system. An example of the limiting case of of the state space L 2(G,dμ(g)) is also consideredTaikomosios informatikos katedraVytauto Didžiojo universiteta

    Models based on tensors with respect to groups

    No full text
    Proceedings Series: XXV Nuclear Physics Workshop Key Problems of Nuclear Physics. PL ISSN 0587-4254 • APPB printed version; PL ISSN 1509-5770 • APPB electronic versionThe paper contains the description of a new method for decomposition of arbitrary Hamiltonians and other operators into the tensor form. The method is based on a special kind of projection operators acting in the space of appropriate operators. The properties of these projection operators and the decomposition method are presentedTaikomosios informatikos katedraVytauto Didžiojo universiteta
    corecore