22 research outputs found

    MFS transportome of the human pathogenic yeast Candida albicans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The major facilitator superfamily (MFS) is one of the two largest superfamilies of membrane transporters present ubiquitously in bacteria, archaea, and eukarya and includes members that function as uniporters, symporters or antiporters. We report here the complete transportome of MFS proteins of a human pathogenic yeast <it>Candida albicans</it>.</p> <p>Results</p> <p>Computational analysis of <it>C. albicans </it>genome enabled us to identify 95 potential MFS proteins which clustered into 17 families using Saier's Transport Commission (TC) system. Among these SP, DHA1, DHA2 and ACS represented major families consisting of 22, 22, 9 and 16 members, respectively. Family designations in <it>C. albicans </it>were validated by subjecting <it>Saccharomyces cerevisiae </it>genome to TC system. Based on the published available genomics/proteomics data, 87 of the putative MFS genes of <it>C. albicans </it>were found to express either at mRNA or protein levels. We checked the expression of the remaining 8 genes by using RT-PCR and observed that they are not expressed under basal growth conditions implying that either these 8 genes are expressed under specific growth conditions or they may be candidates for pseudogenes.</p> <p>Conclusion</p> <p>The <it>in silico </it>characterisation of MFS transporters in <it>Candida albicans </it>genome revealed a large complement of MFS transporters with most of them showing expression. Considering the clinical relevance of <it>C. albicans </it>and role of MFS members in antifungal resistance and nutrient transport, this analysis would pave way for identifying their physiological relevance.</p

    Complete inventory of ABC proteins in human pathogenic yeast, Candida albicans

    No full text
    The recent completion of the sequencing project of the opportunistic human pathogenic yeast, Candida albicans (http://www.ncbi.nlm.nih.gov/), led us to analyze and classify its ATP-binding cassette (ABC) proteins, which constitute one of the largest superfamilies of proteins. Some of its members are multidrug transporters responsible for the commonly encountered problem of antifungal resistance. TBLASTN searches together with domain analysis identified 81 nucleotide-binding domains, which belong to 51 different putative open reading frames. Considering that each allelic pair represents a single ABC protein of the Candida genome, the total number of putative members of this superfamily is 28. Domain organization, sequence-based analysis and self-organizing map-based clustering led to the classification of Candida ABC proteins into 6 distinct subfamilies. Each subfamily from C. albicans has an equivalent in Saccharomyces cerevisiae suggesting a close evolutionary relationship between the two yeasts. Our searches also led to the identification of a new motif to each subfamily in Candida that could be used to identify sequences from the corresponding subfamily in other organisms. It is hoped that the inventory of Candida ABC transporters thus created will provide new insights into the role of ABC proteins in antifungal resistance as well as help in the functional characterization of the superfamily of these proteins

    Characterization of a cytotoxic pilin subunit of Xenorhabdus nematophila

    No full text
    Xenorhabdus nematophila is an insect pathogenic bacterium, known to produce protein toxins that kill the larval host. We have described a cytotoxic pilin subunit of X. nematophila, which is expressed on the cell surface and also secreted in the extracellular medium associated with outer membrane vesicles. A 17 kDa pilin subunit was isolated and purified from X. nematophila cell surface. The protein showed cytotoxicity to larval hemocytes of Helicoverpa armigera in an in vitro assay, causing agglutination of the cells, and releasing cytoplasmic enzyme lactate dehydrogenase in the medium. The pilin protein was able to bind to the surface of larval hemocytes. The binding and cytotoxicity of the purified 17 kDa protein to hemocytes was inhibited by antiserum raised against the pilin protein. The study demonstrates for the first time a cytotoxic structural subunit of pilin from an entomopathogenic bacterium X. nematophila that is excreted in the extracellular medium with outer membrane vesicles

    G-protein α-subunit (GPA1) regulates stress, nitrate and phosphate response, flavonoid biosynthesis, fruit/seed development and substantially shares GCR1 regulation in A. <i>thaliana</i>

    Get PDF
    Heterotrimeric G-proteins are implicated in several plant processes, but the mechanisms of signal-response coupling and the roles of G-protein coupled receptors in general and GCR1 in particular, remain poorly understood. We isolated a knock-out mutant of the Arabidopsis G-protein α subunit (gpa1-5) and analysed its transcriptome to understand the genomewide role of GPA1 and compared it with that of our similar analysis of a GCR1 mutant (Chakraborty et al. 2015, PLoS ONE 10(2):e0117819). We found 394 GPA1-regulated genes spanning 79 biological processes, including biotic and abiotic stresses, development, flavonoid biosynthesis, transcription factors, transporters and nitrate/phosphate responses. Many of them are either unknown or unclaimed explicitly in other published gpa1 mutant transcriptome analyses. A comparison of all known GPA1-regulated genes (including the above 394) with 350 GCR1-regulated genes revealed 114 common genes. This can be best explained by GCR1–GPA1 coupling, or by convergence of their independent signaling pathways. Though the common genes in our GPA1 and GCR1 mutant datasets constitute only 26 % of the GPA1-regulated and 30 % of the GCR1-responsive genes, they belong to nearly half of all the processes affected in both the mutants. Thus, GCR1 and GPA1 regulate not only some common genes, but also different genes belonging to the same processes to achieve similar outcomes. Overall, we validate some known and report many hitherto unknown roles of GPA1 in plants, including agronomically important ones such as biotic stress and nutrient response, and also provide compelling genetic evidence to revisit the role of GCR1 in G-protein signalling

    Insecticidal Pilin Subunit from the Insect Pathogen Xenorhabdus nematophila

    No full text
    Xenorhabdus nematophila is an insect pathogen and produces protein toxins which kill the larval host. Previously, we characterized an orally toxic, large, outer membrane-associated protein complex from the culture medium of X. nematophila. Here, we describe the cloning, expression, and characterization of a 17-kDa pilin subunit of X. nematophila isolated from that protein complex. The gene was amplified by PCR, cloned, and expressed in Escherichia coli. The recombinant protein was refolded in vitro in the absence of its cognate chaperone by using a urea gradient. The protein oligomerized during in vitro refolding, forming multimers. Point mutations in the conserved N-terminal residues of the pilin protein greatly destabilized its oligomeric organization, demonstrating the importance of the N terminus in refolding and oligomerization of the pilin subunit by donor strand complementation. The recombinant protein was cytotoxic to cultured Helicoverpa armigera larval hemocytes, causing agglutination and subsequent release of the cytoplasmic enzyme lactate dehydrogenase. The agglutination of larval cells by the 17-kDa protein was inhibited by several sugar derivatives. The biological activity of the purified recombinant protein indicated that it has a conformation similar to that of the native protein. The 17-kDa pilin subunit was found to be orally toxic to fourth- or fifth-instar larvae of an important crop pest, H. armigera, causing extensive damage to the midgut epithelial membrane. To our knowledge, this is first report describing an insecticidal pilin subunit of a bacterium

    Sorting of LPXTG Peptides by Archetypal Sortase A: Role of Invariant Substrate Residues in Modulating the Enzyme Dynamics and Conformational Signature of a Productive Substrate

    No full text
    Transpeptidase sortase catalyzes the covalent anchoring of surface proteins to the cell wall in Gram-positive bacteria. Sortase A (SrtA) of <i>Staphylococcus aureus</i> is a prototype enzyme and considered a bona fide drug target because several substrate proteins are virulence-related and implicated in pathogenesis. Besides, SrtA also works as a versatile tool in protein engineering. Surface proteins destined for cell wall anchoring contain a LPXTG sequence located in their C-terminus which serves as a substrate recognition motif for SrtA. Recent studies have implicated substrate-induced conformational dynamics in SrtA. In the present work, we have explored the roles of invariant Leu and Pro residues of the substrate in modulating the enzyme dynamics with a view to understand the selection process of a catalytically competent substrate. Overall results of molecular dynamics simulations and experiments carried out with noncanonical substrates and site-directed mutagenesis reveal that the kinked conformation due to Pro in LPXTG is obligatory for productive binding but does not per se control the enzyme dynamics. The Leu residue of the substrate appears to play the crucial role of an anchor to the beta6–beta7 loop directing the conformational transition of the enzyme from an “open” to a “closed” state subsequent to which the Pro residue facilitates the consummation of binding through predominant engagement of the loop and catalytic motif residues in hydrophobic interactions. Collectively, our study provides insights about specificity, tolerance, and conformational sorting of substrate by SrtA. These results have important implications in designing newer substrates and inhibitors for this multifaceted enzyme

    Modification of axial fiber contact residues impact sickle hemoglobin polymerization by perturbing a network of coupled interactions

    No full text
    The identity of intermolecular contact residues in sickle hemoglobin (HbS) fiber is largely known. However, our knowledge about combinatorial effects of two or more contact sites or the mechanistic basis of such effects is rather limited. Lys16, His20, and Glu23 of the α-chain occur in intra-double strand axial contacts in the sickle hemoglobin (HbS) fiber. Here we have constructed two novel double mutants, HbS (K16Q/E23Q) and (H20Q/E23Q), with a view to delineate cumulative impact of interactions emanating from the above contact sites. Far-UV and visible region CD spectra of the double mutants were similar to the native HbS indicating the presence of native-like secondary and tertiary structure in the mutants. The quaternary structures in both the mutants were also preserved as judged by the derivative UV spectra of liganded (oxy) and unliganded (deoxy) forms of the double mutants. However, the double mutants displayed interesting polymerization behavior. The polymerization behaviour of the double mutants was found to be non-additive of the individual single mutants. While HbS (H20Q/E23Q) showed inhibitory effect similar to that of HbS (E23Q), the intrinsic inhibitory propensity of the associated single mutants was totally quelled in HbS (K16Q/E23Q) double mutant. Molecular dynamics (MD) simulations studies of the isolated α-chains as well as a module of the fiber containing the double and associated single mutants suggested that these contact sites at the axial interface of the fiber impact HbS polymerization through a coupled interaction network. The overall results demonstrate a subtle role of dynamics and electrostatics in the polymer formation and provide insights about interaction-linkage in HbS fiber assembly
    corecore