20 research outputs found

    Different experimental approaches in modelling cataractogenesis: An overview of selenite-induced nuclear cataract in rats

    Get PDF
    Cataract, the opacification of eye lens, is the leading cause of blindness worldwide. At present, the only remedy is surgical removal of the cataractous lens and substitution with a lens made of synthetic polymers. However, besides significant costs of operation and possible complications, an artificial lens just does not have the overall optical qualities of a normal one. Hence it remains a significant public health problem, and biochemical solutions or pharmacological interventions that will maintain the transparency of the lens are highly required. Naturally, there is a persistent demand for suitable biological models. The ocular lens would appear to be an ideal organ for maintaining culture conditions because of lacking blood vessels and nerves. The lens in vivo obtains its nutrients and eliminates waste products via diffusion with the surrounding fluids. Lens opacification observed in vivo can be mimicked in vitro by addition of the cataractogenic agent sodium selenite (Na2SeO3) to the culture medium. Moreover, since an overdose of sodium selenite induces also cataract in young rats, it became an extremely rapid and convenient model of nuclear cataract in vivo. The main focus of this review will be on selenium (Se) and its salt sodium selenite, their toxicological characteristics and safety data in relevance of modelling cataractogenesis, either under in vivo or in vitro conditions. The studies revealing the mechanisms of lens opacification induced by selenite are highlighted, the representatives from screening for potential anti-cataract agents are listed

    Silencing of genes involved in Anaplasma marginale-tick interactions affects the pathogen developmental cycle in Dermacentor variabilis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cattle pathogen, <it>Anaplasma marginale</it>, undergoes a developmental cycle in ticks that begins in gut cells. Transmission to cattle occurs from salivary glands during a second tick feeding. At each site of development two forms of <it>A. marginale </it>(reticulated and dense) occur within a parasitophorous vacuole in the host cell cytoplasm. However, the role of tick genes in pathogen development is unknown. Four genes, found in previous studies to be differentially expressed in <it>Dermacentor variabilis </it>ticks in response to infection with <it>A. marginale</it>, were silenced by RNA interference (RNAi) to determine the effect of silencing on the <it>A. marginale </it>developmental cycle. These four genes encoded for putative glutathione S-transferase (GST), salivary selenoprotein M (SelM), H+ transporting lysosomal vacuolar proton pump (vATPase) and subolesin.</p> <p>Results</p> <p>The impact of gene knockdown on <it>A. marginale </it>tick infections, both after acquiring infection and after a second transmission feeding, was determined and studied by light microscopy. Silencing of these genes had a different impact on <it>A. marginale </it>development in different tick tissues by affecting infection levels, the densities of colonies containing reticulated or dense forms and tissue morphology. Salivary gland infections were not seen in any of the gene-silenced ticks, raising the question of whether these ticks were able to transmit the pathogen.</p> <p>Conclusion</p> <p>The results of this RNAi and light microscopic analyses of tick tissues infected with <it>A. marginale </it>after the silencing of genes functionally important for pathogen development suggest a role for these molecules during pathogen life cycle in ticks.</p

    Taurine Prevents Oxidative Damage of High Glucose-Induced Cataractogenesis in Isolated Rat Lenses

    No full text
    corecore