8 research outputs found

    High-titer production of lathyrane diterpenoids from sugar by engineered Saccharomyces cerevisiae

    Get PDF
    Euphorbiaceae are an important source of medically important diterpenoids, such as the anticancer drug ingenol-3-angelate and the antiretroviral drug prostratin. However, extraction from the genetically intractable natural producers is often limited by the small quantities produced, while the organic synthesis of terpene-derived drugs is challenging and similarly low-yielding. While transplanting the biosynthetic pathway into a heterologous host has proven successful for some drugs, it has been largely unsuccessful for diterpenoids due to their elaborate biosynthetic pathways and lack of genetic resources and tools for gene discovery. We engineered casbene precursor production in S. cerevisiae, verified the ability of six Euphorbia lathyris and Jatropha curcas cytochrome P450s to oxidize casbene, and optimized the expression of these P450s and an alcohol dehydrogenase to generate jolkinol C, achieving ~800mg/L of jolkinol C and over 1g/L total oxidized casbanes in millititer plates, the highest titer of oxidized diterpenes in yeast reported to date. This strain enables the semisynthesis of biologically active jolkinol C derivatives and will be an important tool in the elucidation of the biosynthetic pathways for ingenanes, tiglianes, and lathyranes. These findings demonstrate the ability of S. cerevisiae to produce oxidized drug precursors in quantities that are sufficient for drug development and pathway discovery

    Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks

    No full text
    Fatty alcohols in the C12-C18 range are used in personal care products, lubricants, and potentially biofuels. These compounds can be produced from the fatty acid pathway by a fatty acid reductase (FAR), yet yields from the preferred industrial host Saccharomyces cerevisiae remain under 2% of the theoretical maximum from glucose. Here we improved titer and yield of fatty alcohols using an approach involving quantitative analysis of protein levels and metabolic flux, engineering enzyme level and localization, pull-push-block engineering of carbon flux, and cofactor balancing. We compared four heterologous FARs, finding highest activity and endoplasmic reticulum localization from a Mus musculus FAR. After screening an additional twenty-one single-gene edits, we identified increasing FAR expression; deleting competing reactions encoded by DGA1, HFD1, and ADH6; overexpressing a mutant acetyl-CoA carboxylase; limiting NADPH and carbon usage by the glutamate dehydrogenase encoded by GDH1; and overexpressing the Δ9-desaturase encoded by OLE1 as successful strategies to improve titer. Our final strain produced 1.2\ua0g/L fatty alcohols in shake flasks, and 6.0\ua0g/L in fed-batch fermentation, corresponding to ~ 20% of the maximum theoretical yield from glucose, the highest titers and yields reported to date in S. cerevisiae. We further demonstrate high-level production from lignocellulosic feedstocks derived from ionic-liquid treated switchgrass and sorghum, reaching 0.7\ua0g/L in shake flasks. Altogether, our work represents progress towards efficient and renewable microbial production of fatty acid-derived products
    corecore