48 research outputs found

    Evidence for a conformal phase in SU(N) gauge theories

    Get PDF
    We discuss the existence of a conformal phase in SU(N) gauge theories in four dimensions. In this lattice study we explore the model in the bare parameter space, varying the lattice coupling and bare mass. Simulations are carried out with three colors and twelve flavors of dynamical staggered fermions in the fundamental representation. The analysis of the chiral order parameter and the mass spectrum of the theory indicates the restoration of chiral symmetry at zero temperature and the presence of a Coulomb-like phase, depicting a scenario compatible with the existence of an infrared stable fixed point at nonzero coupling. Our analysis supports the conclusion that the onset of the conformal window for QCD-like theories is smaller than Nf=12, before the loss of asymptotic freedom at sixteen and a half flavors. We discuss open questions and future directions.Comment: 11 pages, 11 figures; extended analysis, conclusions unchanged. (version to appear in PRD

    Chiral symmetry of QCD with twelve light flavors

    Get PDF
    We study QCD with twelve light flavors at intermediate values of the bare lattice coupling. We contrast the results for the order parameter with different theoretical models motivated by the physics of the Goldstone phase and of the symmetric phase, and we perform a model independent analysis of the meson spectrum inspired by universal properties of chiral symmetry. Our analysis favors chiral symmetry restoration.Comment: 7 pages, 3 figures. To appear in the proceedings of the XXVIII International Symposium on Lattice Field Theory, Lattice2010, June 14-19, 2010, Villasimius, Ital

    Fisher's zeros as boundary of renormalization group flows in complex coupling spaces

    Full text link
    We propose new methods to extend the renormalization group transformation to complex coupling spaces. We argue that the Fisher's zeros are located at the boundary of the complex basin of attraction of infra-red fixed points. We support this picture with numerical calculations at finite volume for two-dimensional O(N) models in the large-N limit and the hierarchical Ising model. We present numerical evidence that, as the volume increases, the Fisher's zeros of 4-dimensional pure gauge SU(2) lattice gauge theory with a Wilson action, stabilize at a distance larger than 0.15 from the real axis in the complex beta=4/g^2 plane. We discuss the implications for proofs of confinement and searches for nontrivial infra-red fixed points in models beyond the standard model.Comment: 4 pages, 3 fig

    Phases of many flavors QCD : Lattice results

    Get PDF
    This note is based on our recent results on QCD with varying number of flavors of fundamental fermions. Topics include unusual, strong dynamics in the preconformal, confining phase, the physics of the conformal window and the role of ab-initio lattice simulations in establishing our current knowledge of the phases of many flavor QCDComment: 8 pages. Xth Quark Confinement and the Hadron Spectrum, October 2012, Munche

    N=1 SQCD-like theories with N_f massive flavors from AdS/CFT and beta functions

    Get PDF
    We study new supergravity solutions related to large-NcN_c N=1{\cal N}=1 supersymmetric gauge field theories with a large number NfN_f of massive flavors. We use a recently proposed framework based on configurations with NcN_c color D5 branes and a distribution of NfN_f flavor D5 branes, governed by a function NfS(r)N_f S(r). Although the system admits many solutions, under plausible physical assumptions the relevant solution is uniquely determined for each value of xNf/Ncx\equiv N_f/N_c. In the IR region, the solution smoothly approaches the deformed Maldacena-N\'u\~nez solution. In the UV region it approaches a linear dilaton solution. For x<2x<2 the gauge coupling βg\beta_g function computed holographically is negative definite, in the UV approaching the NSVZ β\beta function with anomalous dimension γ0=1/2\gamma_0= -1/2 (approaching 3/(32π2)(2NcNf)g3-3/(32\pi^2)(2N_c-N_f)g^3)), and with βg\beta_g \to-\infty in the IR. For x=2x=2, βg\beta_g has a UV fixed point at strong coupling, suggesting the existence of an IR fixed point at a lower value of the coupling. We argue that the solutions with x>2x>2 describe a "Seiberg dual" picture where Nf2NcN_f-2N_c flips sign.Comment: 18 pages, 10 figure

    A first look at maximally twisted mass lattice QCD calculations at the physical point

    Full text link
    In this contribution, a first look at simulations using maximally twisted mass Wilson fermions at the physical point is presented. A lattice action including clover and twisted mass terms is presented and the Monte Carlo histories of one run with two mass-degenerate flavours at a single lattice spacing are shown. Measurements from the light and heavy-light pseudoscalar sectors are compared to previous Nf=2N_f = 2 results and their phenomenological values. Finally, the strategy for extending simulations to Nf=2+1+1N_f = 2 + 1 + 1 is outlined.Comment: presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German

    Conformality or confinement: (IR)relevance of topological excitations

    Full text link
    We study aspects of the conformality to confinement transition for non-supersymmetric Yang-Mills theories with fermions in arbitrary chiral or vectorlike representations. We use the presence or absence of mass gap for gauge fluctuations as an identifier of the infrared behavior. Present-day understanding does not allow the mass gap for gauge fluctuations to be computed on R*4. However, recent progress allows its non-perturbative computation on R*3xS*1 by using either the twisted partition function or deformation theory, for a range of S*1 sizes depending on the theory. For small number of fermions, Nf, we show that the mass gap increases with increasing radius, due to the non-dilution of monopoles and bions, the topological excitations relevant for confinement on R*3xS*1. For sufficiently large Nf, we show that the mass gap decreases with increasing radius. In a class of theories, we claim that the decompactification limit can be taken while remaining within the region of validity of semi-classical techniques, giving the first examples of semiclassically solvable Yang-Mills theories at any size S*1. For general non-supersymmetric vectorlike or chiral theories, we conjecture that the change in the behavior of the mass gap on R*3xS*1 as a function of the radius occurs near the lower boundary of the conformal window and give non-perturbative estimates of its value. For vectorlike theories, we compare our estimates of the conformal window with existing lattice results, truncations of the Schwinger-Dyson equations, NSVZ beta function-inspired estimates, and degree of freedom counting criteria. For multi-generation chiral gauge theories, to the best of our knowledge, our estimates of the conformal window are the only known ones.Comment: 40 pages, 3 figures; modified various comments, reference adde
    corecore