3,952 research outputs found

    Surface Induced Order in Liquid Metals and Binary Alloys

    Full text link
    Measurements of the surface x-ray scattering from several pure liquid metals (Hg, Ga, and In) and from three alloys (Ga-Bi, Bi-In, and K-Na) with different heteroatomic chemical interactions in the bulk phase are reviewed. Surface-induced layering is found for each elemental liquid metal. The surface structure of the K-Na alloy resembles that of an elemental liquid metal. Bi-In displays pair formation at the surface. Surface segregation and a wetting film are found for Ga-Bi.Comment: 10 pages, 3 fig, published in Journal of Physics: Condensed Matte

    Disorder-induced magnetic memory: Experiments and theories

    Full text link
    Beautiful theories of magnetic hysteresis based on random microscopic disorder have been developed over the past ten years. Our goal was to directly compare these theories with precise experiments. We first developed and then applied coherent x-ray speckle metrology to a series of thin multilayer perpendicular magnetic materials. To directly observe the effects of disorder, we deliberately introduced increasing degrees of disorder into our films. We used coherent x-rays to generate highly speckled magnetic scattering patterns. The apparently random arrangement of the speckles is due to the exact configuration of the magnetic domains in the sample. In effect, each speckle pattern acts as a unique fingerprint for the magnetic domain configuration. Small changes in the domain structure change the speckles, and comparison of the different speckle patterns provides a quantitative determination of how much the domain structure has changed. How is the magnetic domain configuration at one point on the major hysteresis loop related to the configurations at the same point on the loop during subsequent cycles? The microscopic return-point memory(RPM) is partial and imperfect in the disordered samples, and completely absent when the disorder was not present. We found the complementary-point memory(CPM) is also partial and imperfect in the disordered samples and completely absent when the disorder was not present. We found that the RPM is always a little larger than the CPM. We also studied the correlations between the domains within a single ascending or descending loop. We developed new theoretical models that do fit our experiments.Comment: 26 pages, 25 figures, Accepted by Physical Review B 01/25/0

    Disorder-induced microscopic magnetic memory

    Full text link
    Using coherent x-ray speckle metrology, we have measured the influence of disorder on major loop return point memory (RPM) and complementary point memory (CPM) for a series of perpendicular anisotropy Co/Pt multilayer films. In the low disorder limit, the domain structures show no memory with field cycling--no RPM and no CPM. With increasing disorder, we observe the onset and the saturation of both the RPM and the CPM. These results provide the first direct ensemble-sensitive experimental study of the effects of varying disorder on microscopic magnetic memory and are compared against the predictions of existing theories.Comment: 4 pages, 4 figures. Accepted for publication in Physical Review Letters in Nov. 200

    A Simple Quantum Computer

    Get PDF
    We propose an implementation of a quantum computer to solve Deutsch's problem, which requires exponential time on a classical computer but only linear time with quantum parallelism. By using a dual-rail qubit representation as a simple form of error correction, our machine can tolerate some amount of decoherence and still give the correct result with high probability. The design which we employ also demonstrates a signature for quantum parallelism which unambiguously delineates the desired quantum behavior from the merely classical. The experimental demonstration of our proposal using quantum optical components calls for the development of several key technologies common to single photonics.Comment: 8 pages RevTeX + 6 figures in postscrip

    Pattern Formation of Glioma Cells: Effects of Adhesion

    Full text link
    We investigate clustering of malignant glioma cells. \emph{In vitro} experiments in collagen gels identified a cell line that formed clusters in a region of low cell density, whereas a very similar cell line (which lacks an important mutation) did not cluster significantly. We hypothesize that the mutation affects the strength of cell-cell adhesion. We investigate this effect in a new experiment, which follows the clustering dynamics of glioma cells on a surface. We interpret our results in terms of a stochastic model and identify two mechanisms of clustering. First, there is a critical value of the strength of adhesion; above the threshold, large clusters grow from a homogeneous suspension of cells; below it, the system remains homogeneous, similarly to the ordinary phase separation. Second, when cells form a cluster, we have evidence that they increase their proliferation rate. We have successfully reproduced the experimental findings and found that both mechanisms are crucial for cluster formation and growth.Comment: 6 pages, 6 figure

    Effective affinities in microarray data

    Full text link
    In the past couple of years several studies have shown that hybridization in Affymetrix DNA microarrays can be rather well understood on the basis of simple models of physical chemistry. In the majority of the cases a Langmuir isotherm was used to fit experimental data. Although there is a general consensus about this approach, some discrepancies between different studies are evident. For instance, some authors have fitted the hybridization affinities from the microarray fluorescent intensities, while others used affinities obtained from melting experiments in solution. The former approach yields fitted affinities that at first sight are only partially consistent with solution values. In this paper we show that this discrepancy exists only superficially: a sufficiently complete model provides effective affinities which are fully consistent with those fitted to experimental data. This link provides new insight on the relevant processes underlying the functioning of DNA microarrays.Comment: 8 pages, 6 figure

    Two-Bit Gates are Universal for Quantum Computation

    Full text link
    A proof is given, which relies on the commutator algebra of the unitary Lie groups, that quantum gates operating on just two bits at a time are sufficient to construct a general quantum circuit. The best previous result had shown the universality of three-bit gates, by analogy to the universality of the Toffoli three-bit gate of classical reversible computing. Two-bit quantum gates may be implemented by magnetic resonance operations applied to a pair of electronic or nuclear spins. A ``gearbox quantum computer'' proposed here, based on the principles of atomic force microscopy, would permit the operation of such two-bit gates in a physical system with very long phase breaking (i.e., quantum phase coherence) times. Simpler versions of the gearbox computer could be used to do experiments on Einstein-Podolsky-Rosen states and related entangled quantum states.Comment: 21 pages, REVTeX 3.0, two .ps figures available from author upon reques

    Adiabatic Quantum Computing for Random Satisfiability Problems

    Full text link
    The discrete formulation of adiabatic quantum computing is compared with other search methods, classical and quantum, for random satisfiability (SAT) problems. With the number of steps growing only as the cube of the number of variables, the adiabatic method gives solution probabilities close to 1 for problem sizes feasible to evaluate via simulation on current computers. However, for these sizes the minimum energy gaps of most instances are fairly large, so the good performance scaling seen for small problems may not reflect asymptotic behavior where costs are dominated by tiny gaps. Moreover, the resulting search costs are much higher than for other methods. Variants of the quantum algorithm that do not match the adiabatic limit give lower costs, on average, and slower growth than the conventional GSAT heuristic method.Comment: added discussion of discrete adiabatic method, and simulations with 30 bits 8 pages, 8 figure

    Observation of double radiative capture on pionic hydrogen

    Full text link
    We report the first observation of double radiative capture on pionic hydrogen. The experiment was conducted at the TRIUMF cyclotron using the RMC spectrometer, and detected γ\gamma--ray coincidences following π−\pi^- stops in liquid hydrogen. We found the branching ratio for double radiative capture to be (3.05±0.27(stat.)±0.31(syst.))×10−5(3.05 \pm 0.27(stat.) \pm 0.31(syst.)) \times 10^{-5}. The measured branching ratio and angle-energy distributions support the theoretical prediction of a dominant contribution from the ππ→γγ\pi \pi \to \gamma \gamma annihilation mechanism.Comment: 4 Pages, 4 Figures. accepted for publication in Phys. Rev. Let
    • …
    corecore