7,651 research outputs found

    A conditional quantum phase gate between two 3-state atoms

    Get PDF
    We propose a scheme for conditional quantum logic between two 3-state atoms that share a quantum data-bus such as a single mode optical field in cavity QED systems, or a collective vibrational state of trapped ions. Making use of quantum interference, our scheme achieves successful conditional phase evolution without any real transitions of atomic internal states or populating the quantum data-bus. In addition, it only requires common addressing of the two atoms by external laser fields.Comment: 8 fig

    Heisenberg chains cannot mirror a state

    Full text link
    Faithful exchange of quantum information can in future become a key part of many computational algorithms. Some Authors suggest to use chains of mutually coupled spins as channels for quantum communication. One can divide these proposals into the groups of assisted protocols, which require some additional action from the users, and natural ones, based on the concept of state mirroring. We show that mirror is fundamentally not the feature chains of spins-1/2 coupled by the Heisenberg interaction, but without local magnetic fields. This fact has certain consequences in terms of the natural state transfer

    Another Derivation of a Sum Rule for the Two-Dimensional Two-Component Plasma

    Full text link
    In a two-dimensional two-component plasma, the second moment of the number density correlation function has the simple value {12π[1(Γ/4)]2}1\{12 \pi [1-(\Gamma/4)]^2\}^{-1}, where Γ\Gamma is the dimensionless coupling constant. This result is derived directly by using diagrammatic methods.Comment: 10 pages, uses axodraw.sty, elsart.sty, elsart12.sty, subeq.sty; accepted for publication in Physica A, May 200

    Efficient Scheme for Initializing a Quantum Register with an Arbitrary Superposed State

    Full text link
    Preparation of a quantum register is an important step in quantum computation and quantum information processing. It is straightforward to build a simple quantum state such as |i_1 i_2 ... i_n\ket with iji_j being either 0 or 1, but is a non-trivial task to construct an {\it arbitrary} superposed quantum state. In this Paper, we present a scheme that can most generally initialize a quantum register with an arbitrary superposition of basis states. Implementation of this scheme requires O(Nn2)O(Nn^2) standard 1- and 2-bit gate operations, {\it without introducing additional quantum bits}. Application of the scheme in some special cases is discussed.Comment: 4 pages, 4 figures, accepted by Phys. Rev.

    Structure of strongly coupled, multi-component plasmas

    Get PDF
    We investigate the short-range structure in strongly coupled fluidlike plasmas using the hypernetted chain approach generalized to multicomponent systems. Good agreement with numerical simulations validates this method for the parameters considered. We found a strong mutual impact on the spatial arrangement for systems with multiple ion species which is most clearly pronounced in the static structure factor. Quantum pseudopotentials were used to mimic diffraction and exchange effects in dense electron-ion systems. We demonstrate that the different kinds of pseudopotentials proposed lead to large differences in both the pair distributions and structure factors. Large discrepancies were also found in the predicted ion feature of the x-ray scattering signal, illustrating the need for comparison with full quantum calculations or experimental verification

    Entangled Quantum States Generated by Shor's Factoring Algorithm

    Full text link
    The intermediate quantum states of multiple qubits, generated during the operation of Shor's factoring algorithm are analyzed. Their entanglement is evaluated using the Groverian measure. It is found that the entanglement is generated during the pre-processing stage of the algorithm and remains nearly constant during the quantum Fourier transform stage. The entanglement is found to be correlated with the speedup achieved by the quantum algorithm compared to classical algorithms.Comment: 7 pages, 4 figures submitted to Phys. Rev.

    Quantum Mechanics helps in searching for a needle in a haystack

    Get PDF
    Quantum mechanics can speed up a range of search applications over unsorted data. For example imagine a phone directory containing N names arranged in completely random order. To find someone's phone number with a probability of 50%, any classical algorithm (whether deterministic or probabilistic) will need to access the database a minimum of O(N) times. Quantum mechanical systems can be in a superposition of states and simultaneously examine multiple names. By properly adjusting the phases of various operations, successful computations reinforce each other while others interfere randomly. As a result, the desired phone number can be obtained in only O(sqrt(N)) accesses to the database.Comment: Postscript, 4 pages. This is a modified version of the STOC paper (quant-ph/9605043) and is modified to make it more comprehensible to physicists. It appeared in Phys. Rev. Letters on July 14, 1997. (This paper was originally put out on quant-ph on June 13, 1997, the present version has some minor typographical changes

    Rapid solution of problems by nuclear-magnetic-resonance quantum computation

    Get PDF
    We offer an improved method for using a nuclear-magnetic-resonance quantum computer (NMRQC) to solve the Deutsch-Jozsa problem. Two known obstacles to the application of the NMRQC are exponential diminishment of density-matrix elements with the number of bits, threatening weak signal levels, and the high cost of preparing a suitable starting state. A third obstacle is a heretofore unnoticed restriction on measurement operators available for use by an NMRQC. Variations on the function classes of the Deutsch-Jozsa problem are introduced, both to extend the range of problems advantageous for quantum computation and to escape all three obstacles to use of an NMRQC. By adapting it to one such function class, the Deutsch-Jozsa problem is made solvable without exponential loss of signal. The method involves an extra work bit and a polynomially more involved Oracle; it uses the thermal-equilibrium density matrix systematically for an arbitrary number of spins, thereby avoiding both the preparation of a pseudopure state and temporal averaging.Comment: 19 page

    The Meinunger "Nicht Rote" Objects

    Get PDF
    Four high-latitude slow variable stars have been noted by Meinunger (1972) as "nicht rote" ("not red") objects and thus curious. We have previously reported (Margon & Deutsch 1997) that one of these objects, CC Boo, is in fact a QSO. Here we present observations demonstrating that the remaining three are also highly variable active galactic nuclei. The most interesting object of the four is perhaps S 10765 (= NGP9 F324-0276706), which proves to be a resolved galaxy at z=0.063. Despite the rapid and large reported variability amplitude (~1.6 mag), the spectrum is that of a perfectly normal galaxy, with no emission lines or evident nonthermal continuum. We also present new spectroscopic and photometric observations for AR CVn, suggested by Meinunger to be an RR Lyrae star despite its very faint magnitude (=19.4). The object is indeed one of the most distant RR Lyrae stars known, at a galactocentric distance of ~40 kpc.Comment: Accepted for publication in Publications of the Astronomical Society of the Pacific, Volume 111, January 1999; 14 pages including 4 figures and 1 tabl
    corecore