12 research outputs found

    Constraining dust and color variations of high-z SNe using NICMOS on Hubble Space Telescope

    Full text link
    We present data from the Supernova Cosmology Project for five high redshift Type Ia supernovae (SNe Ia) that were obtained using the NICMOS infrared camera on the Hubble Space Telescope. We add two SNe from this sample to a rest-frame I-band Hubble diagram, doubling the number of high redshift supernovae on this diagram. This I-band Hubble diagram is consistent with a flat universe (Omega_Matter, Omega_Lambda= 0.29, 0.71). A homogeneous distribution of large grain dust in the intergalactic medium (replenishing dust) is incompatible with the data and is excluded at the 5 sigma confidence level, if the SN host galaxy reddening is corrected assuming R_V=1.75. We use both optical and infrared observations to compare photometric properties of distant SNe Ia with those of nearby objects. We find generally good agreement with the expected color evolution for all SNe except the highest redshift SN in our sample (SN 1997ek at z=0.863) which shows a peculiar color behavior. We also present spectra obtained from ground based telescopes for type identification and determination of redshift.Comment: 30 pages, 10 figures; accepted for publication in ApJ; v2: revised to match the version in the journa

    Spectroscopic Observations and Analysis of the Peculiar SN 1999aa

    Full text link
    We present an extensive new time-series of spectroscopic data of the peculiar SN 1999aa in NGC 2595. Our data set includes 25 optical spectra between -11 and +58 days with respect to B-band maximum light, providing an unusually complete time history. The early spectra resemble those of a SN 1991T-like object but with a relatively strong Ca H&K absorption feature. The first clear sign of Si II 6355, characteristic of Type Ia supernovae, is found at day -7 and its velocity remains constant up to at least the first month after B-band maximum light. The transition to normal-looking spectra is found to occur earlier than in SN 1991T suggesting SN 1999aa as a possible link between SN 1991T-like and Branch-normal supernovae. Comparing the observations with synthetic spectra, doubly ionized Fe, Si and Ni are identified at early epochs. These are characteristic of SN 1991T-like objects. Furthermore, in the day -11 spectrum, evidence is found for an absorption feature which could be identified as high velocity C II 6580 or H-alpha. At the same epoch C III 4648.8 at photospheric velocity is probably responsible for the absorption feature at 4500 A. High velocity Ca is found around maximum light together with Si II and Fe II confined in a narrow velocity window. Implied constraints on supernovae progenitor systems and explosion hydrodynamical models are briefly discussed.Comment: 46 pages including 23 figures. Accepted for publication by AJ. For full-resolution figures see http://www.physto.se/~gabri/sn99aa

    Spectroscopic observations and analysis of the peculiar SN 1999aa

    No full text
    We present an extensive new time series of spectroscopic data of the peculiar SN 1999aa in NGC 2595. Our data set includes 25 optical spectra between -11 and +58 days with respect to B-band maximum light, providing an unusually complete time history. The early spectra resemble those of an SN 1991T-like object but with a relatively strong Ca H and K absorption feature. The first clear sign of Si II λ6355, characteristic of Type Ia supernovae, is found at day -7, and its velocity remains constant up to at least the first month after B-band maximum light. The transition to normal-looking spectra is found to occur earlier than in SN 1991T, suggesting SN 1999aa as a possible link between SN 1991T-like and Branch-normal supernovae. Comparing the observations with synthetic spectra, doubly ionized Fe, Si, and Ni are identified at early epochs. These are characteristic of SN 1991T-like objects. Furthermore, in the day -11 spectrum, evidence is found for an absorption feature that could be identified as high velocity C II λ6580 or Hα. At the same epoch C II λ4648.8 at photospheric velocity is probably responsible for the absorption feature at 4500 Å. High-velocity Ca is found around maximum light together with Si II and Fe II confined in a narrow velocity window. Implied constraints on supernovae progenitor systems and explosion hydrodynamic models are briefly discussed

    The Hubble diagram of type Ia supernovae as a function of host galaxy morphology

    No full text
    We present new results on the Hubble diagram of distant type Ia supernovae (SNe Ia) segregated according to the type of host galaxy. This makes it possible to check earlier evidence for a cosmological constant by explicitly comparing SNe residing in galaxies likely to contain negligible dust with the larger sample. The cosmological parameters derived from these SNe Ia hosted by presumed dust-free early-type galaxies support earlier claims for a cosmological constant, which we demonstrate at ≃5σ significance, and the internal extinction implied is small even for late-type systems (A B < 0.2). Thus, our data demonstrate that host galaxy extinction is unlikely to systematically dim distant SNe Ia in a manner that would produce a spurious cosmological constant. Our analysis is based on new Hubble Space Telescope STIS 'snapshot' images and Keck-II echellette spectroscopy at the locations of the SNe, spanning the redshift range 0 < z < 0.8. Selecting from the sample discovered by the Supernova Cosmology Project (SCP), we classify the host galaxies of 39 distant SNe using the combination of STIS imaging, Keck spectroscopy and ground-based broad-band photometry. The distant data are analysed in comparison with a low-redshift sample of 25 SNe Ia re-calibrated according to the precepts of the SCP. The scatter observed in the SNe Ia Hubble diagrams correlates closely with host galaxy morphology. We find this scatter is smallest for SNe Ia occurring in early-type hosts and largest for those occurring in late-type galaxies. Moreover, SNe residing in late-type hosts appear ≃0.14 ± 0.09 mag fainter in their light-curve-width-corrected luminosity than those in early-type hosts, as expected if a modest amount of dust extinction is a contributing factor. As in previous studies, these results are broadly independent of whether corrections based upon SN light-curve shapes are performed. We also use our high-redshift data set to search for morphological dependences in the SNe light curves, as are sometimes seen in lowredshift samples. No significant trends are found, possibly because the range of light-curve widths is too limited
    corecore