10 research outputs found

    Effects of Livestock Grazing Management Practices on Greater Sage-Grouse Nest and Female Survival

    Get PDF
    The decline in greater sage-grouse (Centrocercus urophasianus; sage-grouse) populations across western North America has been primarily attributed to loss and fragmentation of their sagebrush (Artemisia spp.) habitats. This habitat loss is largely the result of increased human activities, with grazing by domestic livestock as the most predominant land use across the sagebrush ecosystem in North America. The goal of my research was to increase our understanding of the effects of livestock on sage-grouse populations. I reviewed the peer-reviewed literature for all published studies that reported potential effects of grazing on grouse species worldwide. I found that there was an overall negative effect of domestic livestock grazing on grouse populations in general. I compared sage-grouse nest success on two study sites managed under differing prescribed livestock grazing practices to determine their relative effects on sage-grouse nest survival. I found that nest survival was slightly higher in areas managed under high-intensity low-frequency rest-rotation practices. The difference was not statistically significant (P \u3c 0.05). However, these areas received lower precipitation and were grazed at a higher stocking rate (AUM · ha-1) without negatively affecting nest survival compared to areas of that were mostly grazed as single pastures from May-September. Because livestock grazing in the sagebrush ecosystem has been historically facilitated with sagebrush reduction treatments to increase forage for livestock, I compared the relative effects of these treatments with the more direct effect from livestock grazing. Sagebrush treatments were found to have a greater effect on female sage-grouse survival than livestock grazing. This understanding can be useful for land managers looking to attenuate the effects of management decisions related to livestock grazing systems in the sagebrush ecosystem

    Wild Horse Country: The History, Myth, and Future of the Mustang

    Get PDF

    Greater Sage-Grouse Response to Season-Long and Prescribed Grazing.

    Get PDF

    Synthesis of Nest Predation Impacts of Common Ravens on Sensitive Avian Species

    Get PDF
    Decades of mounting scientific evidence have revealed that common raven (Corvus corax; raven) population numbers have been increasing across nearly all regions of their geographic range in North America. Concomitantly, numerous native wildlife species have experienced elevated predation rates from ravens as populations have increased and expanded their range. Managers are concerned that increased raven predation of many threatened and endangered avian species in the U.S. and Canada during nesting periods may be hampering species recovery. We explored the literature to aggregate existing knowledge and evaluate the impacts of raven predation on nests and young of sensitive avian species. We used this information to develop a simple relative index for each species, the “Raven Impact Index” (RII). The RII incorporated the species demographic rates, abundance of ravens in relation to each sensitive species’ breeding range, and the degree of overlap between raven and sensitive prey distributions. We also developed a second relative descriptor describing our confidence in each RII, termed a “Impact Credibility Index (ICI).” The species ICI was based on the number of published studies and the type of evidence presented (e.g., circumstantial vs. direct). We found evidence of nest predation on 8 sensitive avian species and suspected nest predation on 1 additional species. All species shared aspects of nesting biology that suggested they would likely be susceptible to raven nest predation. The RII varied among prey species, with greater sage-grouse (Centrocercus urophasianus) having the highest relative impact values, followed by snowy plover (Charadrius nivosus nivosus), marbled murrelet (Brachyramphus marmoratus), and Gunnison sage-grouse (Centrocercus minimus). Our species RII is intended to inform management decisions regarding actions that mitigate the negative effects of raven predation of sensitive avian species. Although elevated nest predation may be of high conservation concern, it is important to recognize that all of the sensitive native prey species we established an RII for also face multiple conservation threats

    Occurrence, Resource Use, and Demography of the Common Raven in North America: a Research Synthesis

    Get PDF
    We reviewed the scientific literature to inventory existing studies of common raven (Corvus corax; raven) ecology in western North America. We conducted an intial literature review between June 2015 and March 2018. Prior to completing our review, we revisited the published literature for any additional relevant studies in July 2021. Our goal was to identify knowledge gaps and to synthesize the current understanding of environmental features that may support raven populations that pose general threats to biodiversity and sensitive species in particular. We focused our review on studies with direct conservation applications related to 3 processes of raven ecology: occurrence, resource use, and demography. We identified covariates that researchers associated with these processes of raven ecology, and we also quantified the geographic distribution of studies. Our review identified 54 studies, with an increasing number of studies published per decade and a geographic bias characterized by more studies conducted in the Mojave and Columbia Plateau ecoregions than elsewhere. Most studies (44) reported on a single ecological process, but 10 studies reported on multiple ecological processes. Results related to raven occurrence appeared 31 times; demographic results appeared 21 times; and resource use was reported 17 times. We also identified 13 explanatory covariates regularly invoked to explain variation in raven ecological processes. Greater attention was given to covariates including vegetation land cover, human settlement, recreation, and linear rights-of-ways than were used to explain variation in ecological processes. Most demographic studies investigated raven reproduction exclusively, but a small number of studies considered raven survival exclusively or in combination with reproduction. Along with a detailed summary of individual studies provided as an appendix, we intend for our findings to serve as a reference and to help identify future research priorities

    Effects of livestock grazing on rangeland biodiversity: A meta-analysis of grouse populations

    Get PDF
    Livestock grazing affects over 60% of the world’s agricultural lands and can influence rangeland ecosystem services and the quantity and quality of wildlife habitat, resulting in changes in biodiversity. Concomitantly, livestock grazing has the potential to be detrimental to some wildlife species while benefiting other rangeland organisms. Many imperiled grouse species require rangeland landscapes that exhibit diverse vegetation structure and composition to complete their life cycle. However, because of declining populations and reduced distributions, grouse are increasingly becoming a worldwide conservation concern. Grouse, as a suite of upland gamebirds, are often considered an umbrella species for other wildlife and thus used as indicators of rangeland health. With a projected increase in demand for livestock products, better information will be required to mitigate the anthropogenic effects of livestock grazing on rangeland biodiversity. To address this need, we completed a data-driven and systematic review of the peer-reviewed literature to determine the current knowledge of the effects of livestock grazing on grouse populations (i.e., chick production and population indices) worldwide. Our meta-analysis revealed an overall negative effect of livestock grazing on grouse populations. Perhaps more importantly, we identified an information void regarding the effects of livestock grazing on the majority of grouse species. Additionally, the reported indirect effects of livestock grazing on grouse species were inconclusive and more reflective of differences in the experimental design of the available studies. Future studies designed to evaluate the direct and indirect effects of livestock grazing on wildlife should document (i) livestock type, (ii) timing and frequency of grazing, (iii) duration, and (iv) stocking rate. Much of this information was lacking in the available published studies we reviewed, but is essential when making comparisons between different livestock grazing management practices and their potential impacts on rangeland biodiversity

    Estimating Trends of Common Raven Populations in North America, 1966–2018

    Get PDF
    Over the last half century, common raven (Corvus corax; raven) populations have increased in abundance across much of North America. Ravens are generalist predators known to depredate the eggs and young of several sensitive species. Quantifying raven population increases at multiple spatial scales across North America will help wildlife resource managers identify areas where population increases present the greatest risk to species conservation. We used a hierarchical Bayesian modeling approach to analyze trends of standardized raven counts from 1966 to 2018 using Breeding Bird Survey data within each Level I and II ecoregion of the United States and Canada. We also compared raven abundance within and outside the distributions of 9 sensitive or endangered species. Although we found substantial evidence that raven populations have increased across North America, populations varied in growth rates and relative abundances among regions. We found 73% of Level I (11/15) and II (25/34) ecoregions demonstrated positive annual population growth rates ranging from 0.2–9.4%. We found higher raven abundance inside versus outside the distributions of 7 of the 9 sensitive species included in our analysis. Gunnison sage-grouse (Centrocercus minimus) had the highest discrepancy, with 293% more ravens within compared to outside of their range, followed by greater sandhill crane (Antigone canadensis tabida; 280%), and greater sage-grouse (C. urophasianus; 204%). Only 2 species, least tern (Sternula antillarum) and piping plover (Charadrius melodus), indicated lower raven abundance within relative to outside their distributions. Our findings will help wildlife resource managers identify regional trends in abundance of ravens and anticipate which sensitive species are at greatest risk from elevated raven populations. Future research directed at identifying the underlying regional drivers of these trends could help elucidate the most appropriate and responsive management actions and, thereby, guide the development of raven population management plans to mitigate impacts to sensitive species

    A Rapid Assessment Function to Estimate Common Raven Population Densities: Implications for Targeted Management

    Get PDF
    Common raven (Corvus corax; raven) populations have increased over the past 5 decades within the western United States. Raven population increases have been largely attributed to growing resource subsidies from expansion of human enterprise. Concomitantly, managers are becoming increasingly concerned about elevated adverse effects on multiple sensitive prey species, damage to livestock and agriculture, and human safety. Managers could benefit from a rapid but reliable method to estimate raven densities across spatiotemporal scales to monitor raven populations more efficiently and inform targeted and adaptive management frameworks. However, obtaining estimates of raven density is data- and resource-intensive, which renders monitoring within an adaptive framework unrealistic. To address this need, we developed a rapid survey protocol for resource managers to estimate site-level density based on the average number of ravens per survey. Specifically, we first estimated raven densities at numerous field sites with robust distance sampling procedures and then used regression to investigate the relationship between those density estimates and the number of ravens per survey, which revealed a strong correlation (R2 = 0.86). For management application, we provide access to R function software through a web-based interface to estimate density using number of ravens per survey, which we refer to as a Rapid Assessment Function (RAF). Then, using a simulation analysis of data from sites with abundant surveys and the RAF, we estimated raven density based on different numbers of surveys to help inform how many surveys are needed to achieve reliable estimates within this rapid assessment. While more robust procedures of distance sampling are the preferred methods for estimating raven densities from count surveys, the RAF tool presented herein provides a reliable approximation for informing management decisions when managers are faced with resource and small sample size constraints

    SMaRT: A Science-based Tiered Framework for Common Ravens

    Get PDF
    Large-scale increases and expansion of common raven (Corvus corax; raven) populations are occurring across much of North America, leading to increased negative consequences for livestock and agriculture, human health and safety, and sensitive species conservation. We describe a science-based adaptive management framework that incorporates recent quantitative analyses and mapping products for addressing areas with elevated raven numbers and minimizing potential adverse impacts to sensitive species, agricultural damage, and human safety. The framework comprises 5 steps: (1) desktop analysis; (2) field assessments; (3) comparison of raven density estimates to an ecological threshold (in terms of either density or density plus distance to nearest active or previous nest); (4) prescribing management options using a 3-tiered process (i.e., habitat improvements, subsidy reductions, and direct actions using StallPOPd.V4 software); and (5) post-management monitoring. The framework is integrated within the Science-based Management of Ravens Tool (SMaRT), a web-based application outfitted with a user-friendly interface that guides managers through each step to develop a fully customized adaptive plan for raven management. In the SMaRT interface, users can: (1) interact with pre-loaded maps of raven occurrence and density and define their own areas of interest within the Great Basin to delineate proposed survey or treatment sites; (2) enter site-level density estimates from distance sampling methods or perform estimation of raven densities using the rapid assessment protocol that we provide; (3) compare site-level density estimates to an identified ecological threshold; and (4) produce a list of potential management options for their consideration. The SMaRT supports decision-making by operationalizing scientific products for raven management and facilitates realization of diverse management goals including sensitive species conservation, protection of livestock and agriculture, safeguarding human health, and addressing raven overabundance and expansion. We illustrate the use of the framework through SMaRT using an example of greater sage-grouse (Centrocercus urophasianus) conservation efforts within the Great Basin, USA

    Phenology largely explains taller grass at successful nests in greater sage-grouse

    Get PDF
    Much interest lies in the identification of manageable habitat variables that affect key vital rates for species of concern. For ground-nesting birds, vegetation surrounding the nest may play an important role in mediating nest success by providing concealment from predators. Height of grasses surrounding the nest is thought to be a driver of nest survival in greater sage-grouse (Centrocercus urophasianus; sage-grouse), a species that has experienced widespread population declines throughout their range. However, a growing body of the literature has found that widely used field methods can produce misleading inference on the relationship between grass height and nest success. Specifically, it has been demonstrated that measuring concealment following nest fate (failure or hatch) introduces a temporal bias whereby successful nests are measured later in the season, on average, than failed nests. This sampling bias can produce inference suggesting a positive effect of grass height on nest survival, though the relationship arises due to the confounding effect of plant phenology, not an effect on predation risk. To test the generality of this finding for sage-grouse, we reanalyzed existing datasets comprising \u3e800 sage-grouse nests from three independent studies across the range where there was a positive relationship found between grass height and nest survival, including two using methods now known to be biased. Correcting for phenology produced equivocal relationships between grass height and sage-grouse nest survival. Viewed in total, evidence for a ubiquitous biological effect of grass height on sage-grouse nest success across time and space is lacking. In light of these findings, a reevaluation of land management guidelines emphasizing specific grass height targets to promote nest success may be merited
    corecore