140 research outputs found
Allelic Variation Investigation of the Estrogen Receptor Within an Australian Multiple Sclerosis Population
Multiple Sclerosis (MS) is a central nervous system (CNS) chronic inflammatory demyelinating disease leading to various neurological disabilities. The disorder is more prevalent for women with a ratio of 3:2 female to male. Objectives: To investigate variation within the estrogen receptor 1 (ESR1) polymorphism gene in an Australian MS case-control population using two intragenic restriction fragment length polymorphisms; the G594A located in exon 8 detected with the BtgI restriction enzyme and T938C located in intron 1, detected with PvuII. One hundred and ten Australian MS patients were studied, with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 110 age, sex and ethnicity matched controls were investigated as a comparative group. No significant difference in the allelic distribution frequency was found between the case and control groups for the ESR1 PvuII (P = 0.50) and Btg1 (P = 0.45) marker. Our results do not support a role for these two ESR1 markers in multiple sclerosis susceptibility, however other markers within ESR1 should not be excluded for potential involvement in the disorder
Elaboration of tantalum oxide and carbon nanotubes composite coatings on titanium for biomaterial applications
Assessment of Catalyst Selectivity in Carbon-Nanotube Silylesterification
The functionalization of carbon nanotubes (CNTs) plays a key role in their solubilization and compatibility for many applications. Among the many possible ways to functionalize CNTs, the creation of an Si–O–C bond is crucial for the formation of silicone composites. Catalyst-mediated silylesterification is useful in creating Si–O–C bonds because it is cost-effective and uses a hydrosilane precursor of lower reactivity than that of chlorosilane. However, it was previously demonstrated that two important silylesterification catalysts (zinc chloride and Karstedt’s catalyst) exhibit different selectivity for oxidized functional groups that are present on the surface of CNTs after oxidative acid treatment. This report details the selective modification of CNTs with various oxygenated functional groups (aromatic and nonaromatic alcohols, carboxylic acids, ethers, and ketones) using diazonium chemistry. Modified CNTs were used to assess the specifity of zinc chloride and Karstedt’s catalyst for oxygenated functional groups during a silylesterification reaction. Karstedt’s catalyst appeared to be widely applicable, allowing for the silylesterification of all of the aforementioned oxygenated functional groups. However, it showed lower efficacy for ethers and ketones. By contrast, zinc chloride was found to be very specific for nonaromatic carboxylic acids. This study also examined the Hansen solubility parameters of modified CNTs
Elaboration of tantalum oxide and carbon nanotubes composite coatings on titanium for biomaterial applications
Differently substituted aniline functionalized MWCNTs to anchor oxides of Bi and Ni nanoparticles
XPS fast depth profile of the native oxide layers on AISI 304, 316 and 430 commercial stainless steels and their evolution with time
The thin oxide layers forming on the metal surfaces of metals determine their interactions with the environment and have a strong influence on the materials properties such as corrosion resistance. Such oxide layers typically have a thickness in the range of a few nanometres, which is a challenge for the analysis of their chemical nature and structure. To characterize such materials and surfaces, XPS using depth profile sputtering is a sensitive and powerful technique. However, it is rather elaborate and raises the risk of changing the nature of the surface layer during the analysis process. This work reports on a protocol for a faster approach to depth profile X-Ray photoelectron spectroscopy (XPS) analysis to obtain accurate and reproducible information on the oxide layer structure by using the snapshot mode of the XPS instrument. This protocol is applied to three stainless steels differing by their chemical composition: FeCr AISI 430, FeCrNi AISI 304 and the chemically more complex FeCrNiMo AISI 316. The respective oxide layer structures observed using this methodology are consistent with literature data. In addition, the structures have been confirmed using non-destructive techniques such as angle-resolved XPS (AR-XPS) and Hard XPS (HAXPES). Finally, the analysis protocol has been applied to obtain information on the evolution of the surface chemistry of those stainless steel grades resulting from mechanical polishing and subsequent aging in contact with atmosphere.The authors acknowledge SOLEIL for provision of synchrotron radiation facilities (proposal 20180830) and would like to thank D. Ceolin and J.-P. Rueff for assistance in using beamline "GALAXIES". The authors thanks the DGO6 for supporting this research in the field of AdEPT project (convention 1610449)Detriche, S (corresponding , author), Univ Namur, Namur Inst Struct Matter NISM, Lab Chem & Electrochem Surfaces CES, Rue Bruxelles 61, B-5000 Namur, Belgium.
[email protected]
XPS fast depth profile of the native oxide layers on AISI 304, 316 and 430 commercial stainless steels and their evolution with time
Elaboration of tantalum oxide and carbon nanotubes composite coatings on titanium for biomaterial applications
Tantalum oxide/carbon nanotubes composite coatings on titanium, and their functionalization with organophosphonic molecular films:A high quality scaffold for hydroxyapatite growth
peer reviewedNowadays, titanium is a very commonly used biomaterial for the preparation of orthopedic and dental implants. Its excellent mechanical and biochemical bulk properties are nevertheless counterbalanced by its propensity to long term degradation in physiological conditions and its weak osseointegrative capacities. In this context, surface modifications can significantly hinder titanium weaknesses. The approach considered in this work relies on the preparation of thin composite coatings based on tantalum oxide and carbon nanotubes by sol–gel process. Tantalum is particularly interesting for its high biocompatibility and bioactivity, as well as its strong resistance to bio-corrosion. Carbon nanotubes are exploited to reinforce the compactness and homogeneity of the coatings, and can act as a favorable factor to strengthen the interaction with bone components by biomimicry. The composite layers are further modified with specific organophosphonic acid molecular films, able to chemically bind the tantalum oxide surface and improve the hydroxyapatite formation process. The characteristics and the qualities of these hybrid inorganic/organic coatings are evaluated by XPS, SEM, TEM, peeling tests, contact angle measurements, and electrochemical characterizations (free potential, polarization curves)
Decoration of tricarboxylic and monocarboxylic aryl diazonium functionalized multi-wall carbon nanotubes with iron nanoparticles
- …
