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ABSTRACT

A simple, reliable, reproducible, and efficient method to decorate multi-wall

carbon nanotubes (MWCNTs) with iron nanoparticles is presented. Purified

MWCNTs are first functionalized with mono- and tricarboxylic aryl diazonium

salts generated in situ, then iron nanoparticles are formed using iron (II) acetate.

Different characterization techniques (XPS, TEM, PXRD, and FESEM) are used

to assess the properties of the resulting materials. Homogeneous distribution of

iron nanoparticles on MWCNTs is evidenced with a Gaussian mean diameter of

*2.7 ± 0.2 and *3.8 ± 0.3 nm for monocarboxylic and tricarboxylic function-

alizations, respectively. Obtaining such a small size homogeneously distributed

iron nanoparticles on MWCNTs is the main achievement of this work. Fur-

thermore, nanoparticles based on tricarboxylic aryl diazonium functions, used

for the first time to functionalize CNTs, are more crystalline and essentially in

the metallic state. This opens interesting perspectives for nanotechnology. The

present methodology is also applicable to large-scale preparation.

Introduction

Carbon nanotubes (CNTs) have received great

attention due to their extraordinary tensile strength,

high chemical stability, large surface area, excellent

electrical and high thermal conductivities [1]. These

CNTs properties have potential applications in the

field of hydrogen storage [2], solar and fuel cells,

lithium ion batteries, supercapacitors [3],

nanotweezers [4], quantum wires [5], field emission

sources [6], electronic devices [7], chemical and

biosensors [8, 9], to cite a few. The efficient photo-

absorption and photo-thermal conversion properties

of CNTs in the near-infrared (IR) region make them

prone to be used as near-IR functional materials [10].

CNTs absorb near-IR radiation, quickly transferring

electronic excitations into molecular vibration ener-

gies resulting in heat [11]. Accordingly, CNTs have
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been suggested as the ideal metal catalyst support for

sensing and electrocatalytic applications [12–16].

As-prepared CNTs contain impurities like by-pro-

duct carbonaceous species, metallic catalyst. Fur-

thermore, CNTs are insoluble in most solvents

because of the strong van der Waals interactions that

firmly hold them together in bundles. This affects the

unique properties of CNTs [17]. Different methods of

CNTs functionalization to enhance their solubility

and dispersion in various solvents have been repor-

ted. In particular, treatments with acids [18] and

oxidants [19] increase their solubility in water.

Reaction with (R-)-oxycarbonyl nitrenes [20] leads to

the functionalization of CNTs with different groups

such as dendrimers, aromatic groups, crown ethers,

alkyl chains, and oligoethylene glycol units which

allows significant increase in the solubility in organic

solvents like dimethyl sulfoxide (DMSO), 1,2-

dichlorobenzene (ODCB) and 1,1,2,2-tetra-

chloroethane (TCE). Prato reaction [21] applied to

CNTs enhances their solubility in CH2Cl2, CHCl3,

ethanol, methanol, acetone, and also water. Deriva-

tization [22] with thionychloride and octadecylamine

leads to an increase of CNTs solubility in common

organic solvents. Electrochemical methods were also

employed to functionalize CNTs [23, 24]. Diazonium

chemistry plays a very important role in the nano-

research areas [25, 26].

Nanoparticles possess unique optical, chemical,

and magnetic properties resulting from their small

size. Magnetic nanoparticles have applications in

electrical components (e.g., transformers) [27], diag-

nosis and treatment of diseases [28], transducer and

sensor applications [29]. These properties are most

effective with very small particle size (\10–20 nm). In

many cases, these effects decrease when particles size

increases and essentially disappear for sizes beyond

40–50 nm. Iron nanoparticles are also used as cata-

lysts [30–32]. Iron (zerovalent) nanoparticles exhibit

high reactivity towards the transformation of pollu-

tants and hence are widely used for the treatment of

hazardous waste, remediation of soil and ground-

water [33–37]. Iron nanoparticles play an important

role in biomedical applications [38] where they have

also been considered as potential magnetic carriers

[39]. CNTs are highly hydrophobic in nature and

chemically stable. Due to these properties, CNTs

decoration with magnetic NPs of several to tens of

nanometres of elements or compounds [40–49] are

usually achieved by wet chemistry. Other methods

use thermal decomposition [50, 51] and electrodepo-

sition [52].

Methods for the decoration of iron nanoparticles on

CNTs have been reported but have still certain limi-

tations to overcome like control of particle size and

distribution, chemical state of the particles and their

purity, process simplicity [53–57]. In this work, we

aim to control the size, concentration, nature, and

distribution of iron nanoparticles on MWCNTs. This

is achieved using IR irradiation [58–63] to function-

alize purified multi-wall carbon nanotubes (p-

MWCNTs) with mono- (p-MWCNTs-D1) and tricar-

boxylic aryl diazonium (p-MWCNTs-D3) and

impregnate them with iron nanoparticles.

Materials and methods

Chemicals

All the chemicals are of analytical grade or higher

purity and used as such. NaOH ([98%) and iron (II)

acetate (95%) are purchased from Acros Organics.

Sodium nitrite (99.2%), 5-amino-1,2,3-benzenetricar-

boxylic acid (97%), 4-aminobenzoic acid (99%), per-

chloric acid (70%), pentane (99%), and acetone

([99%) are obtained from Fisher Scientific UK, ABCR

GmbH &CO.KG, Aldrich, Merck Eurolab nv/sa, Lab-

Scan Analytical Sciences and Chem-Lab, respectively.

All aqueous solutions are made using ultra-pure

water. The thin MWCNTs (NC 7000) ([95%) received

from Nanocyl SA (Belgium) have length of several

(0.1–10) lm with an average diameter of 10 nm.

Apparatus

Irradiation of the samples during the impregnation

step is carried out using a Petra IR 11 IR lamp (ca-

pacity: 150 W, 50/60 Hz, voltage: 230 V). XPS spectra

are recorded on a Thermo Scientific K-Alpha spec-

trometer using monochromatized Al Ka radiation

(1486.6 eV), and the photoelectrons collected at 0�
with respect to the surface normal are analysed using

a hemispherical analyser. The major peak of core-

level spectra is calibrated with respect to C1 s level

fixed at 284.6 eV. The spot size of the X-ray source on

the sample is 200 lm, and the analyser is operated

with a pass energy of 200 and 50 eV for survey and

high-resolution core levels spectra, respectively. XPS

samples were prepared by making use of aluminium
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plate. Scotch tape is cut into small square pieces and

pasted onto the aluminium plate. The sticky end of

the scotch tape is exposed by removing the paper

from it. The sample is kept on the top of it, and it is

pressed using spatula to fix the sample and then

excess sample is removed using suction. Transmis-

sion electron microscopy (TEM) analyses are carried

out using Tecnai 10 Philips microscope. Samples for

TEM analysis are prepared by dispersing the material

in ethanol and depositing a drop of suspension on a

carbon-coated copper grid. TEM was operated with

80 kV accelerating voltage, 5 lA emission current

and spot size 3. Powder X-Ray diffraction (PXRD) is

performed using PAN analytical XPert PRO Bragg–

Brentano diffractometer with tube current of 30 mA

and an operating voltage of 45 kV with Cu Ka
(k = 1.5418 Å) in the 2h range of 10�–90�. Field

emission scanning electron microscopy (FESEM)

studies are carried out using a JEOL JSM-7500F

microscope operating at 15 kV at a working distance

of 4.2 mm.

Purification of crude MWCNTs

The process of purification is as follows: 1 g of crude

MWCNTs is mixed with 100 ml of 12 M NaOH [64]

solution in a round-bottomed flask. The above sus-

pension is then heated under constant agitation at

170 �C for 12 h. The mixture is cooled, filtered, and

washed with water until neutral pH and ultimately

washed with acetone and dried in air. The purified

MWCNTs are referred to as p-MWCNTs.

Carboxylic aryl diazonium functionalization
of p-MWCNTs

In the present case, p-MWCNTs (80 mg) are mixed

with 5-amino-1,2,3-benzenetricarboxylic acid

(150 mg, 0.67 mmol), water (10 ml), sodium nitrite

(46 mg, 0.67 mmol), and perchloric acid (69 ll,
1.14 mmol). The mixture is then IR irradiated under

constant magnetic stirring for 1 h, then cooled down

to room temperature, and filtered, and the residue is

washed with pentane followed by acetone and

finally, dried at room temperature. The tricarboxylic

aryl diazonium functionalized MWCNTs thus

obtained are referred to hereafter as p-MWCNTs-D3.

Similarly, the monocarboxylic diazonium function-

alized MWCNTs (p-MWCNTs-D1) are obtained with

4-aminobenzoic acid (91 mg, 0.66 mmol) according to

the above procedure.

Impregnation of Iron (II) acetate on
p-MWCNTs-D3 and p-MWCNTs-D1

0.1739 g of iron (II) acetate (IA) is dissolved in 100 ml

of water. The functionalized CNTs (p-MWCNTs-D3

or p-MWCNTs-D1) are added into the above solu-

tion. The mixture is sonicated for 5 min and then IR

irradiated under constant magnetic stirring for 2 h.

The mixture is cooled to room temperature and fil-

tered, and the residue is washed with water followed

by acetone and dried in air. The impregnated

p-MWCNTs thus obtained are referred to hereafter as

p-MWCNTs-D3/IA and p-MWCNTs-D1/IA.

Calcination of p-MWCNTs-D3/IA and
p-MWCNTs-D1/IA

The p-MWCNTs-D3/IA and p-MWCNTs-D1/IA are

calcined in a tubular furnace equipped with a quartz

tube maintained at 500 �C under a continuous flow of

argon gas for 2 h. The obtained materials are labelled

as p-MWCNTs-D3/Fe and p-MWCNTs-D1/Fe,

respectively.

Results and discussion

Carbon nanotubes are characterized (XPS, TEM,

PXRD, and FESEM) and compared at each step of

their modifications (purification, functionalization,

impregnation and calcination).

Materials chemical composition by XPS

Figure 1 shows the XPS general survey spectra of

p-MWCNTs, p-MWCNTs-D3, p-MWCNTs-D1,

p-MWCNTs-D3/IA, p-MWCNTs-D1/IA, p-MWCNTs

-D3/Fe and p-MWCNTs-D1/Fe. Percentage compo-

sitions of these materials are displayed in Table 1.

Absence of alumina and silica in p-MWCNTs

(Fig. 1a) validates the efficiency of the purification

method of MWCNTs. The peak at 285.3 eV, in all

cases, is attributed to Csp2—hybridized carbon in the

graphitic layers of the CNTs. The presence of O1 s

and N1 s (Fig. 1b, c) indicates that MWCNTs are

functionalized with tricarboxylic and monocarboxylic

aryl diazonium groups. Impregnation of IA on
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carboxylic functions is confirmed by the presence of

the Fe2p peak (Fig. 1d, e) which remains after heat

treatment (Fig. 1f, g).

XPS C1 s core-level spectra of p-MWCNTs (97.82%

Cand 2.73%O), p-MWCNTs-D3 (74.20%Cand 27.98%

O), p-MWCNTs-D1 (96.72% C and 5.44% O),

p-MWCNTs-D3/IA (86.48% C and 23.63% O),

p-MWCNTs-D1/IA (97.87% C and 3.61% O),

p-MWCNTs-D3/Fe(96.81% C and 4.30% O), and

p-MWCNTs-D1/Fe (97.53%Cand3.32%O) are shown

in Fig. 2. The C1 s region of p-MWCNTs-D3 (Fig. 2b)

contains seven peaks [65, 66]. The broad and highly

intense peak at 284.6 eV is ascribed to sp2-hybridized

graphitic carbon, and the one at 285.9 eV is due to sp3-

hybridized carbon resulting from structural defects on

CNTs outer surface. The peak at 286.7 eV corresponds

to carbon–oxygen single bonds (C–O). Carbon bounds

to oxygen through double bonds (C=O) appear at

287.6 eV, while carbons bound to two oxygen atoms

(–COO) appear at 289.1 eV. The shake-up peak at

290.6 eV is characteristic of the aromatic character of

CNTs, while the peak at 283.9 eV results from an

artefact from the spectrometer [67]. Similar peaks,

especially those of the shake-up and the carboxylic

groups, are presentwith lower intensities in the case of

p-MWCNTs-D1 (Fig. 2c). This clearly evidences the

presence of carboxylic acid groups in both cases but

with a larger relative amount for p-MWCNTs-D3. The

amount of oxygen present in these high-resolution

spectra are almost in good correlation with that

reported in the survey spectra of p-MWCNTs,

p-MWCNTs-D3, p-MWCNTs-D1, and p-MWCNTs-

D3/IA. The amount of oxygen found in high-resolu-

tion spectra of p-MWCNTs-D1/IA, p-MWCNTs-D3/

Fe, and p-MWCNTs-D1/Fe are more than those

reported in the survey spectra. The slight differences

found in the amount of oxygen present in high reso-

lution and survey spectra for p-MWCNTs and

p-MWCNTs-D1 can be attributed to the presence of

physisorbed water. The differences for p-MWCNTs-

D3 may be due to physisorbed water as well as pres-

ence of CN bonds. The differences arise in the

p-MWCNTs-D3/IA may be result of physisorbed

water, CNbonds and presence of FeO on the surface of

the CNTs. The differences arise for p-MWCNTs-D1/

IA, p-MWCNTs-D3/Fe, and p-MWCNTs-D1/Fe can

be assigned to the contribution of oxygen from FeO.

High-resolution XPS spectra obtained from O1 s

and Fe2p are displayed in Figs. 3 and 4, respectively.

Materials morphology by TEM and FESEM

TEM image of p-MWCNTs (Fig. S1 supplementary

information) indicates that the nanotubes keep their

integrity after the purification process. TEM images

of p-MWCNTs-D3 (Fig. 5a) and p-MWCNTs-D1

(Fig. 5d) show that the nanotubes remain intact after

the functionalization step, which is a definite

advantage over acid treatments known to damage the

tubes [22]. Indeed, chemical oxidation is one of the

common methods to purify CNTs. This includes

electrochemical oxidation, gas phase oxidation (using

O2, air, H2O, Cl2, etc.), and liquid phase oxidation

(acid treatment and refluxing, etc.) [68]. The normally

used oxidants for liquid phase oxidation include

HNO3 [69–71], H2O2 or a mixture of H2O2 and HCl

Figure 1 XPS survey spectra of a p-MWCNTs, b p-MWCNTs-

D3, c p-MWCNTs-D1, d p-MWCNTs-D3/IA, e p-MWCNTs-D1/

IA, f p-MWCNTs-D3/Fe, and g p-MWCNTs-D1/Fe.

Table 1 Chemical composition of different materials obtained

from XPS analysis

Material C% O% N% Fe%

p-MWCNTs 98.50 1.50 – –

p-MWCNTs-D3 72.85 23.87 3.28 –

p-MWCNTs-D1 92.87 6.59 0.54 –

p-MWCNTs-D3/IA 67.46 25.34 1.29 5.91

p-MWCNTs-D1/IA 83.89 10.17 1.04 4.89

p-MWCNTs-D3/Fe 82.94 11.25 – 5.42

p-MWCNTs-D1/Fe 89.01 7.33 – 3.63
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Figure 2 Core-level XPS

spectra C1 s regions of a p-

MWCNTs, b p-MWCNTs-D3,

c p-MWCNTs-D1, d p-

MWCNTs-D3/IA, e p-

MWCNTs-D1/IA, f p-

MWCNTs-D3/Fe, and g p-

MWCNTs-D1/Fe.

J Mater Sci



[72–74], KMnO4 [75–77] and mixture of H2SO4 and

HNO3 [78]. The disadvantages of chemical oxidation

methods are to form undesired reaction products on

the surface of CNTs, cut CNTs, often open the

extremities of CNTs, damage surface structure and

incorporate oxygenated functional groups (–CO,

Figure 3 High-resolution XPS spectra of core O1 s of a p-MWCNTs-D3, b p-MWCNTs-D3/IA, c p-MWCNTs-D3/Fe, d p-MWCNTs-

D1, e p-MWCNTs-D1/IA, f p-MWCNTs-D1/Fe.

J Mater Sci



–OH, –COOH, …) on the CNTs surface. The above

results also validate the effectiveness of the car-

boxylic aryl diazonium functionalization using IR

irradiation. Figure 5b and e shows the presence of an

amorphous iron layer for both p-MWCNTs-D3/IA

and p-MWCNTs-D1/IA with a larger density in the

case of p-MWCNTs-D3/IA. This uniform iron layer

confirms that not only the particles distribution but

also the carboxylic aryl diazonium functionalization

on p-MWCNTs is uniform. After calcination, iron

nanoparticles are formed. Their diameter on the

p-MWCNTs-D3/Fe (Fig. 5c) surface measured from

TEM is in the range of 1–8 nm, with a Gaussian mean

diameter of *3.8 ± 0.3 nm (Fig. 6a). In the case of

p-MWCNTs-D1/Fe (Fig. 5f), the range is of 1–5 nm,

with a Gaussian mean diameter of *2.7 ± 0.2 nm

(Fig. 6b). The fact that these iron nanoparticles are

still present on the CNTs surface after the various

treatments indicates that they are strongly attached.

There are other different methods in the literature for

decoration of CNTs with iron or iron oxide

nanoparticles, but these methodologies result in

clusters of nanoparticles (due to aggregation) [79, 80],

comparatively very large particle size [46, 81] and

non-homogeneous decoration [42, 82–85]. The pre-

sent approach is free from all of these complications.

Thus, obtaining a small size homogeneously dis-

tributed iron nanoparticles on MWCNTs is the main

achievement of this work.

FESEM studies were carried out to further assess

the surface morphology of all samples. The images of

p-MWCNTs (Fig. S2), p-MWCNTs-D3 (Fig. S3 a), and

Figure 4 High-resolution XPS spectra of core Fe2p of a p-MWCNTs-D3/IA, b p-MWCNTs-D3/Fe, c p-MWCNTs-D1/IA, d p-

MWCNTs-D1/Fe.
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p-MWCNTs-D1 (Fig. S3 d) show smooth surface as

expected since there is no decoration of particles. The

nanoparticles are visible on decorated MWCNTs

(Fig. S3c and Fig. S3f).

Characterization of materials by PXRD

The PXRD patterns of decorated MWCNTs before

and after calcination are illustrated in Fig. 7.

The diffraction peak at 2h = 25.8�, due to (002)

planes of graphitic carbon in MWCNTs structure is

seen in all cases. Figure 7c, related to p-MWCNTs-

D3/Fe, shows different peaks. The iron crystal is

body centred cubic (bcc) with diffraction peaks at

2h = 44.7� (110), 63.01� (200), and 82.37� (211) [86].

The very sharp peak at 2h = 44.7� indicates the

crystalline nature of iron nanoparticles, while the one

at 2h = 35.7� is characteristic of zerovalent iron (a-Fe)
and iron oxide (FeO) crystalline phases [87].

No sharp iron phases reflection is observed in the

case of samples p-MWCNTs-D3/IA (Fig. 7a) and

p-MWCNTs-D1/IA (Fig. 7b) since the impregnated

particles of the composites are usually amorphous

before calcination. Even after calcination, there is no

Figure 5 TEM images of a p-MWCNTs-D3, b p-MWCNTs-D3/IA, c p-MWCNTs-D3/Fe, d p-MWCNTs-D1, e p-MWCNTs-D1/IA, and

f p-MWCNTs-D1/Fe.
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sharp reflection observed for p-MWCNTs-D1/Fe

(Fig. 7d), indicating that resulting iron nanoparticles

are less crystalline in nature.

Conclusions

A simple, reliable, reproducible, and efficient method

is applied to impregnate iron-containing nanoparti-

cles on p-MWCNTs-D3 and p-MWCNTs-D1 using

iron (II) acetate as iron precursor by IR irradiation.

Iron nanoparticles are uniformly decorated on

p-MWCNTs-D3 and p-MWCNTs-D1, and their mor-

phology and structure are investigated by various

techniques.

The calcination of the iron-treated MWCNTs leads

to two size ranges of iron nanoparticles, obtained

through the use of two (mono- and tricarboxylic

diazonium salts) different functionalizations of

MWCNTs. Iron nanoparticles size range varies from

1 nm to 5 nm with a Gaussian mean diameter of

*2.7 ± 0.2 nm and, from 1 to 8 nm with a Gaussian

mean diameter of *3.8 ± 0.3 nm. Loading of Fe on

the surface of MWCNTs is more important in the case

of tricarboxylic functions than the monocarboxylic

ones. This is mainly due the effect of 3 COOH groups.

Furthermore, nanoparticles based on tricarboxylic

aryl diazonium functions, used for the first time to

functionalize CNTs, are more crystalline and essen-

tially in the metallic state. This clearly proves the

superiority of tricarboxylic aryl diazonium functions

over monocarboxylic aryl diazonium ones. The pre-

sent methodology is also applicable to large-scale

preparation. The as-prepared iron nanoparticles

decorated MWCNTs are expected to have synergistic

effects and hence would be of use in many potential

applications such as electronic devices, energy stor-

age and conversion system, chemical and biosensor.
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