11 research outputs found

    Elevated Flt3L predicts long-term survival in patients with high-grade gastroenteropancreatic neuroendocrine neoplasms

    Get PDF
    BACKGROUND: The clinical management of high-grade gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) is challenging due to disease heterogeneity, illustrating the need for reliable biomarkers facilitating patient stratification and guiding treatment decisions. FMS-like tyrosine kinase 3 ligand (Flt3L) is emerging as a prognostic or predictive surrogate marker of host tumoral immune response and might enable the stratification of patients with otherwise comparable tumor features. METHODS: We evaluated Flt3L gene expression in tumor tissue as well as circulating Flt3L levels as potential biomarkers in a cohort of 54 patients with GEP-NEN. RESULTS: We detected a prominent induction of Flt3L gene expression in individual G2 and G3 NEN, but not in G1 neuroendocrine tumors (NET). Flt3L mRNA expression levels in tumor tissue predicted the disease-related survival of patients with highly proliferative G2 and G3 NEN more accurately than the conventional criteria of grading or NEC/NET differentiation. High level Flt3L mRNA expression was associated with the increased expression of genes related to immunogenic cell death, lymphocyte effector function and dendritic cell maturation, suggesting a less tolerogenic (more proinflammatory) phenotype of tumors with Flt3L induction. Importantly, circulating levels of Flt3L were also elevated in high grade NEN and correlated with patients' progression-free and disease-related survival, thereby reflecting the results observed in tumor tissue. CONCLUSIONS: We propose Flt3L as a prognostic biomarker for high grade GEP-NEN, harnessing its potential as a marker of an inflammatory tumor microenvironment. Flt3L measurements in serum, which can be easily be incorporated into clinical routine, should be further evaluated to guide patient stratification and treatment decisions

    Axon guidance factor Slit2 inhibits neural invasion and metastasis in pancreatic cancer

    No full text
    Pancreatic ductal adenocarcinoma (PDAC) metastasizes by neural, vascular and local invasion routes, which limit patient survival. In nerves and vessels, Slit2 and its Robo receptors constitute repellent guidance cues that also direct epithelial branching. Thus, the Slit2-Robo system may represent a key pinch point to regulate PDAC spread. In this study, we examined the hypothesis that escaping from repellent Slit2-Robo signaling is essential to enable PDAC cells to appropriate their local stromal infrastructure for dissemination. Through immunohistochemical analysis, we detected Slit2 receptors Robo1 and Robo4 on epithelia, nerves and vessels in healthy pancreas and PDAC specimens, respectively. Slit2 mRNA expression was reduced in PDAC compared to non-transformed pancreatic tissues and cell lines, suggesting a reduction in Slit2-Robo pathway activity in PDAC. In support of this interpretation, restoring the Slit2 expression in Slit2-deficient PDAC cells inhibited their bidirectional chemoattraction with neural cells, and more specifically impaired unidirectional PDAC cell navigation along outgrowing neurites in models of neural invasion. Restoring autocrine/paracrine Slit2 signaling was also sufficient to inhibit the directed motility of PDAC cells, but not their random movement. Conversely, RNAi-mediated silencing of Robo1 stimulated the motility of Slit2-competent PDAC cells. Furthermore, culture supernatants from Slit2-competent PDAC cells impaired migration of endothelial cells (HUVEC) whereas an N-terminal Slit2 cleavage fragment stimulated such migration. In vivo investigations of orthotopic pancreatic tumors with restored Slit2 expression demonstrated reduced invasion, metastasis and vascularization, with opposing effects produced by Robo1 silencing in tumor cells or sequestration of endogenous Slit2. Analysis of clinical specimens of PDAC showed that those with low Slit2-mRNA expression exhibited a higher incidence and a higher fraction of tumor-infiltrated lymph nodes. Taken together, our findings argue that disrupting Slit2-Robo signaling in PDAC may enhance metastasis and predispose PDAC cells to neural invasion

    Angiopoietin-2 drives lymphatic metastasis of pancreatic cancer

    No full text
    Lymphatic metastasis constitutes a critical route of disease dissemination, which limits the prognosis of patients with pancreatic ductal adenocarcinoma (PDAC). As lymphangiogenesis has been implicated in stimulation of lymphatic metastasis by vascular endothelial growth factor-C (VEGF-C) and VEGF-D, we studied the effect of the angioregulatory growth factor angiopoietin-2 (Ang-2) on PDAC progression. Ang-2 was found to be expressed in transformed cells of human PDAC specimens, with corresponding Tie-2 receptors present on blood and lymphatic endothelium. In vitro in PDAC cells, Ang-2 was subject to autocrine/paracrine TGF-β stimulation (2-fold induction, P=0.0106) acting on the -61- to +476-bp element of the human Ang-2 promoter. In turn, Ang-2 regulated the expression of genes involved in cell motility and tumor suppression. Orthotopic PDAC xenografts with forced expression of Ang-2, but not Ang-1, displayed increased blood and lymphatic vessel density, and an enhanced rate of lymphatic metastasis (6.7- to 9.1-fold, P<0.01), which was prevented by sequestration of Ang-2 via coexpression of soluble Tie-2. Notably, elevated circulating Ang-2 in patients with PDAC correlated with the extent of lymphatic metastasis. Furthermore, median survival was reduced from 28.4 to 7.7 mo in patients with circulating Ang-2 ≥ 75th percentile (P=0.0005). These findings indicate that Ang-2 participates in the control of lymphatic metastasis, constitutes a noninvasive prognostic biomarker, and may provide an accessible therapeutic target in PDAC

    Tumor suppressor p16INK4a--modulator of glycomic profile and galectin-1 expression to increase susceptibility to carbohydrate-dependent induction of anoikis in pancreatic carcinoma cells

    No full text
    Expression of the tumor suppressor p16(INK4a) after stable transfection can restore the susceptibility of epithelial tumor cells to anoikis. This property is linked to increases in the expression and cell-surface presence of the fibronectin receptor. Considering its glycan chains as pivotal signals, we assumed an effect of p16(INK4a) on glycosylation. To test this hypothesis for human Capan-1 pancreatic carcinoma cells, we combined microarray for selected glycosyltransferase genes with 2D chromatographic glycan profiling and plant lectin binding. Major differences between p16-positive and control cells were detected. They concerned expression of beta1,4-galactosyltransferases (down-regulation of beta1,4-galactosyltransferases-I/V and up-regulation of beta1,4-galactosyltransferase-IV) as well as decreased alpha2,3-sialylation of O-glycans and alpha2,6-sialylation of N-glycans. The changes are compatible with increased beta(1)-integrin maturation, subunit assembly and binding activity of the alpha(5)beta(1)-integrin. Of further functional relevance in line with our hypothesis, we revealed differential reactivity towards endogenous lectins, especially galectin-1. As a result of reduced sialylation, the cells' capacity to bind galectin-1 was enhanced. In parallel, the level of transcription of the galectin-1 gene increased conspicuously in p16(INK4a)-positive cells, and even figured prominently in a microarray on 1996 tumor-associated genes and in proteomic analysis. The cells therefore gain optimal responsiveness. The correlation between genetically modulated galectin-1 levels and anoikis rates in engineered transfectants inferred functional significance. To connect these findings to the fibronectin receptor, galectin-1 was shown to be co-immunoprecipitated. We conclude that p16(INK4a) orchestrates distinct aspects of glycosylation that are relevant for integrin maturation and reactivity to an endogenous effector as well as the effector's expression. This mechanism establishes a new aspect of p16(INK4a) functionality

    Brassica oleracea

    No full text
    corecore