104 research outputs found

    Measurement of nuclear effects in neutrino-argon interactions using generalized kinematic imbalance variables with the MicroBooNE detector

    Get PDF
    We present a set of new generalized kinematic imbalance variables that can be measured in neutrino scattering. These variables extend previous measurements of kinematic imbalance on the transverse plane and are more sensitive to modeling of nuclear effects. We demonstrate the enhanced power of these variables using simulation and then use the MicroBooNE detector to measure them for the first time. We report flux-integrated single- and double-differential measurements of charged-current muon neutrino scattering on argon using a topology with one muon and one proton in the final state as a function of these novel kinematic imbalance variables. These measurements allow us to demonstrate that the treatment of charged current quasielastic interactions in genie version 2 is inadequate to describe data. Further, they reveal tensions with more modern generator predictions particularly in regions of phase space where final state interactions are important

    Multidifferential cross section measurements of νμ -argon quasielasticlike reactions with the MicroBooNE detector

    Get PDF
    We report on a flux-integrated multidifferential measurement of charged-current muon neutrino scattering on argon with one muon and one proton in the final state using the Booster Neutrino Beam and MicroBooNE detector at Fermi National Accelerator Laboratory. The data are studied as a function of various kinematic imbalance variables and of a neutrino energy estimator, and are compared to a number of event generator predictions. We find that the measured cross sections in different phase-space regions are sensitive to nuclear effects. Our results provide precision data to test and improve the neutrino-nucleus interaction models needed to perform high-accuracy oscillation analyses. Specific regions of phase space are identified where further model refinements are most needed

    First demonstration of O (1 ns) timing resolution in the MicroBooNE liquid argon time projection chamber

    Get PDF
    MicroBooNE is a neutrino experiment located in the Booster Neutrino Beamline (BNB) at Fermilab, which collected data from 2015 to 2021. MicroBooNE's liquid argon time projection chamber (LArTPC) is accompanied by a photon detection system consisting of 32 photomultiplier tubes used to measure the argon scintillation light and determine the timing of neutrino interactions. Analysis techniques combining light signals and reconstructed tracks are applied to achieve a neutrino interaction time resolution of O(1 ns). The result obtained allows MicroBooNE to access the nanosecond beam structure of the BNB for the first time. The timing resolution achieved will enable significant enhancement of cosmic background rejection for all neutrino analyses. Furthermore, the ns timing resolution opens new avenues to search for long-lived-particles such as heavy neutral leptons in MicroBooNE, as well as in future large LArTPC experiments, namely the SBN program and DUNE

    First Double-Differential Measurement of Kinematic Imbalance in Neutrino Interactions with the MicroBooNE Detector

    Get PDF
    We report the first measurement of flux-integrated double-differential quasielasticlike neutrino-argon cross sections, which have been made using the Booster Neutrino Beam and the MicroBooNE detector at Fermi National Accelerator Laboratory. The data are presented as a function of kinematic imbalance variables which are sensitive to nuclear ground-state distributions and hadronic reinteraction processes. We find that the measured cross sections in different phase-space regions are sensitive to different nuclear effects. Therefore, they enable the impact of specific nuclear effects on the neutrino-nucleus interaction to be isolated more completely than was possible using previous single-differential cross section measurements. Our results provide precision data to help test and improve neutrino-nucleus interaction models. They further support ongoing neutrino-oscillation studies by establishing phase-space regions where precise reaction modeling has already been achieved

    TYK2 Kinase Activity Is Required for Functional Type I Interferon Responses In Vivo

    Get PDF
    Tyrosine kinase 2 (TYK2) is a member of the Janus kinase (JAK) family and is involved in cytokine signalling. In vitro analyses suggest that TYK2 also has kinase-independent, i.e., non-canonical, functions. We have generated gene-targeted mice harbouring a mutation in the ATP-binding pocket of the kinase domain. The Tyk2 kinase-inactive (Tyk2K923E) mice are viable and show no gross abnormalities. We show that kinase-active TYK2 is required for full-fledged type I interferon- (IFN) induced activation of the transcription factors STAT1-4 and for the in vivo antiviral defence against viruses primarily controlled through type I IFN actions. In addition, TYK2 kinase activity was found to be required for the protein’s stability. An inhibitory function was only observed upon over-expression of TYK2K923E in vitro. Tyk2K923E mice represent the first model for studying the kinase-independent function of a JAK in vivo and for assessing the consequences of side effects of JAK inhibitors

    New CC0\pi\ GENIE Model Tune for MicroBooNE

    Full text link
    A novel tune has been made for the MicroBooNE experiment. The fit uses 4 new parameters within the GENIE v3.0.6 Monte Carlo program. Charged current pionless data from the T2K experiment was used. New uncertainties were obtained. These results will be used in future MicroBooNE analyses.Comment: 24 pages, 14 figure

    First demonstration of O(1 ns)\mathcal{O}(1\,\text{ns}) timing resolution in the MicroBooNE liquid argon time projection chamber

    Full text link
    MicroBooNE is a neutrino experiment located in the Booster Neutrino Beamline (BNB) at Fermilab, which collected data from 2015 to 2021. MicroBooNE's liquid argon time projection chamber (LArTPC) is accompanied by a photon detection system consisting of 32 photomultiplier tubes used to measure the argon scintillation light and determine the timing of neutrino interactions. Analysis techniques combining light signals and reconstructed tracks are applied to achieve a neutrino interaction time resolution of O(1 ns)\mathcal{O}(1\,\text{ns}). The result obtained allows MicroBooNE to access the ns neutrino pulse structure of the BNB for the first time. The timing resolution achieved will enable significant enhancement of cosmic background rejection for all neutrino analyses. Furthermore, the ns timing resolution opens new avenues to search for long-lived-particles such as heavy neutral leptons in MicroBooNE, as well as in future large LArTPC experiments, namely the SBN program and DUNE

    Measurement of neutral current single π0\pi^0 production on argon with the MicroBooNE detector

    Get PDF
    We report the first measurement of π0\pi^0 production in neutral current (NC) interactions on argon with average neutrino energy of ≲1\lesssim1~GeV. We use data from the MicroBooNE detector's 85-tonne active volume liquid argon time projection chamber situated in Fermilab's Booster Neutrino Beam and exposed to 5.89×10205.89\times10^{20} protons on target for this measurement. Measurements of NC π0\pi^0 events are reported for two exclusive event topologies without charged pions. Those include a topology with two photons from the decay of the π0\pi^0 and one proton and a topology with two photons and zero protons. Flux-averaged cross-sections for each exclusive topology and for their semi-inclusive combination are extracted (efficiency-correcting for two-plus proton final states), and the results are compared to predictions from the \textsc{genie}, \textsc{neut}, and \textsc{NuWro} neutrino event generators. We measure cross sections of 1.243±0.1851.243\pm0.185 (syst) ±0.076\pm0.076 (stat), 0.444±0.098±0.0470.444\pm0.098\pm0.047, and 0.624±0.131±0.0750.624\pm0.131\pm0.075 [10−38cm2/Ar][10^{-38}\textrm{cm}^2/\textrm{Ar}] for the semi-inclusive NCπ0\pi^0, exclusive NCπ0\pi^0+1p, and exclusive NCπ0\pi^0+0p processes, respectively.Comment: 16 pages, 14 figures, 2 table
    • …
    corecore