103 research outputs found
Recommended from our members
Computational Studies of Bonding and Phosphorescent Properties of Group 12 Oligomers and Extended Excimers.
Density functional (ca, BLYP, BPW91, B3LYP and B3PW91), MP2 and CCSD(T) methods in combination with LANL2DZ or cc-pVxZ-PP (where x=D(double), T(triple) Q(quadruple), and 5(quintuple)) basis sets have been employed in computing electronic transition energies of zinc and cadmium monomers. CCSD(T)/aug-cc-pV5Z-PP combination finds values that are 150 cm-1 from the experimental value for the zinc monomer and 240 cm-1 remove from the cadmium monomer excitation experimental value. These method/basis set combinations are also used to find spectroscopic values (re, De, we, wexe, Be , and Te) that rival experimental values for dimers and excimers. Examples of this can be seen with the CCSD(T)/aug-cc-pV5Z-PP combination phosphorescent emission results. The values found are within 120 cm-1 of the zinc emission energy and 290 cm-1 of the cadmium emission energy. While this combination rigorously models spectroscopic constants for monomers, dimers, and excimers, it does not efficiently model these constants for larger clusters with available modern computational resources. It is important to show spectroscopic trends (bonding, phosphorescent excitation and emissions) as clusters increase as the monomer and dimer emission energies do not model solid state metallophilic interactions and phosphorescence. The MP2/LANL2DZ combinations show qualitative cooperative bonding trends in group oligomers and extended excimers as size increases and shape change. Changes in excitation and emission energies are also shown as a function of size and shape of the clusters
Recommended from our members
Photophysics and Photochemistry of Copper(I) Phosphine and Collidine Complexes: An Experimental/Theoretical Investigation
Copper(I) complexes have been studied through both experimental and computational means in the presented work. Overall, the work focuses on photophysical and photochemical properties of copper(I) complexes. Photophysical and photochemical properties are found to be dependent on the geometries of the copper(I) complexes. One of the geometric properties that are important for both photochemical and photophysical properties is coordination number. Coordination numbers have been observed to be dependent on both ligand size and recrystallization conditions. The complexes geometric structure, as well as the electronic effects of the coordination ligands, is shown both computationally as well as experimentally to affect the emission energies. Two-coordinate complexes are seen to have only weak emission at liquid nitrogen temperature (77 K), while at room temperature (298 K) the two-coordinate complexes are not observed to be luminescent. Three-coordinate complexes are observed to be luminescent at liquid nitrogen temperature as well as at room temperature. The three-coordinate complexes have a Y-shaped ground (S0) state that distorts towards a T-shape upon photoexcitation to the lowest lying phosphorescent state (T1). The geometric distortion is tunable by size of the coordinating ligand. Luminescence is controllable by limiting the amount of non-radiative emission. One manner by which non-radiative emission is controlled is the amount of geometric distortion that occurs as the complex undergoes photoexcitation. Bulky ligands allow for less distortion than smaller ligands, leading to higher emission energies (blue shifted energies) with higher quantum efficiency. Tuning emission and increasing quantum efficiencies can be used to create highly efficient, white emitting materials for use in white OLEDS
Transient Pressures from Compression of Discrete Air Pockets in Rapidly Filling Combined Sewer Storage Tunnels
https://deepblue.lib.umich.edu/bitstream/2027.42/154163/1/39015099114905.pd
Regulation of human cortical interneuron development by the chromatin remodeling protein CHD2
Mutations in the chromodomain helicase DNA binding protein 2 (CHD2) gene are associated with neurodevelopmental disorders. However, mechanisms by which CHD2 regulates human brain development remain largely uncharacterized. Here, we used a human embryonic stem cell model of cortical interneuron (hcIN) development to elucidate its roles in this process. We identified genome-wide CHD2 binding profiles during hcIN differentiation, defining direct CHD2 targets related to neurogenesis in hcIN progenitors and to neuronal function in hcINs. CHD2 bound sites were frequently coenriched with histone H3 lysine 27 acetylation (H3K27ac) and associated with high gene expression, indicating roles for CHD2 in promoting gene expression during hcIN development. Binding sites for different classes of transcription factors were enriched at CHD2 bound regions during differentiation, suggesting transcription factors that may cooperatively regulate stage-specific gene expression with CHD2. We also demonstrated that CHD2 haploinsufficiency altered CHD2 and H3K27ac coenrichment on chromatin and expression of associated genes, decreasing acetylation and expression of cell cycle genes while increasing acetylation and expression of neuronal genes, to cause precocious differentiation. Together, these data describe CHD2 direct targets and mechanisms by which CHD2 prevents precocious hcIN differentiation, which are likely to be disrupted by pathogenic CHD2 mutation to cause neurodevelopmental disorders
Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering
Engineering biosynthetic pathways in heterologous microbial host organisms offers an elegant approach to pathway elucidation via the incorporation of putative biosynthetic enzymes and characterization of resulting novel metabolites. Our previous work in Escherichia coli demonstrated the feasibility of a facile modular approach to engineering the production of labdane-related diterpene (20 carbon) natural products. However, yield was limited (<0.1Â mg/L), presumably due to reliance on endogenous production of the isoprenoid precursors dimethylallyl diphosphate and isopentenyl diphosphate. Here, we report incorporation of either a heterologous mevalonate pathway (MEV) or enhancement of the endogenous methyl erythritol phosphate pathway (MEP) with our modular metabolic engineering system. With MEP pathway enhancement, it was found that pyruvate supplementation of rich media and simultaneous overexpression of three genes (idi, dxs, and dxr) resulted in the greatest increase in diterpene yield, indicating distributed metabolic control within this pathway. Incorporation of a heterologous MEV pathway in bioreactor grown cultures resulted in significantly higher yields than MEP pathway enhancement. We have established suitable growth conditions for diterpene production levels ranging from 10 to >100Â mg/L of E. coli culture. These amounts are sufficient for nuclear magnetic resonance analyses, enabling characterization of enzymatic products and hence, pathway elucidation. Furthermore, these results represent an up to >1,000-fold improvement in diterpene production from our facile, modular platform, with MEP pathway enhancement offering a cost effective alternative with reasonable yield. Finally, we reiterate here that this modular approach is expandable and should be easily adaptable to the production of any terpenoid natural product
Design of a Protective Single-Dose Intranasal Nanoparticle-Based Vaccine Platform for Respiratory Infectious Diseases
Despite the successes provided by vaccination, many challenges still exist with respect to controlling new and re-emerging infectious diseases. Innovative vaccine platforms composed of adaptable adjuvants able to appropriately modulate immune responses, induce long-lived immunity in a single dose, and deliver immunogens in a safe and stable manner via multiple routes of administration are needed. This work describes the development of a novel biodegradable polyanhydride nanoparticle-based vaccine platform administered as a single intranasal dose that induced long-lived protective immunity against respiratory disease caused by Yesinia pestis, the causative agent of pneumonic plague. Relative to the responses induced by the recombinant protein F1-V alone and MPLA-adjuvanted F1-V, the nanoparticle-based vaccination regimen induced an immune response that was characterized by high titer and high avidity IgG1 anti-F1-V antibody that persisted for at least 23 weeks post-vaccination. After challenge, no Y. pestis were recovered from the lungs, livers, or spleens of mice vaccinated with the nanoparticle-based formulation and histopathological appearance of lung, liver, and splenic tissues from these mice post-vaccination was remarkably similar to uninfected control mice
Rational Design of Pathogen-Mimicking Amphiphilic Materials as Nanoadjuvants
An opportunity exists today for cross-cutting research utilizing advances in materials science, immunology, microbial pathogenesis, and computational analysis to effectively design the next generation of adjuvants and vaccines. This study integrates these advances into a bottom-up approach for the molecular design of nanoadjuvants capable of mimicking the immune response induced by a natural infection but without the toxic side effects. Biodegradable amphiphilic polyanhydrides possess the unique ability to mimic pathogens and pathogen associated molecular patterns with respect to persisting within and activating immune cells, respectively. The molecular properties responsible for the pathogen-mimicking abilities of these materials have been identified. The value of using polyanhydride nanovaccines was demonstrated by the induction of long-lived protection against a lethal challenge of Yersinia pestis following a single administration ten months earlier. This approach has the tantalizing potential to catalyze the development of next generation vaccines against diseases caused by emerging and re-emerging pathogens
- …