90 research outputs found

    Analysis of factors influencing the ultrasonic fetal weight estimation

    Get PDF
    Objective: The aim of our study was the evaluation of sonographic fetal weight estimation taking into consideration 9 of the most important factors of influence on the precision of the estimation. Methods: We analyzed 820 singleton pregnancies from 22 to 42 weeks of gestational age. We evaluated 9 different factors that potentially influence the precision of sonographic weight estimation ( time interval between estimation and delivery, experts vs. less experienced investigator, fetal gender, gestational age, fetal weight, maternal BMI, amniotic fluid index, presentation of the fetus, location of the placenta). Finally, we compared the results of the fetal weight estimation of the fetuses with poor scanning conditions to those presenting good scanning conditions. Results: Of the 9 evaluated factors that may influence accuracy of fetal weight estimation, only a short interval between sonographic weight estimation and delivery (0-7 vs. 8-14 days) had a statistically significant impact. Conclusion: Of all known factors of influence, only a time interval of more than 7 days between estimation and delivery had a negative impact on the estimation

    Disproportionate Intrauterine Growth Intervention Trial At Term: DIGITAT

    Get PDF
    Contains fulltext : 65628.pdf ( ) (Open Access)BACKGROUND: Around 80% of intrauterine growth restricted (IUGR) infants are born at term. They have an increase in perinatal mortality and morbidity including behavioral problems, minor developmental delay and spastic cerebral palsy. Management is controversial, in particular the decision whether to induce labour or await spontaneous delivery with strict fetal and maternal surveillance. We propose a randomised trial to compare effectiveness, costs and maternal quality of life for induction of labour versus expectant management in women with a suspected IUGR fetus at term. METHODS/DESIGN: The proposed trial is a multi-centre randomised study in pregnant women who are suspected on clinical grounds of having an IUGR child at a gestational age between 36+0 and 41+0 weeks. After informed consent women will be randomly allocated to either induction of labour or expectant management with maternal and fetal monitoring. Randomisation will be web-based. The primary outcome measure will be a composite neonatal morbidity and mortality. Secondary outcomes will be severe maternal morbidity, maternal quality of life and costs. Moreover, we aim to assess neurodevelopmental and neurobehavioral outcome at two years as assessed by a postal enquiry (Child Behavioral Check List-CBCL and Ages and Stages Questionnaire-ASQ). Analysis will be by intention to treat. Quality of life analysis and a preference study will also be performed in the same study population. Health technology assessment with an economic analysis is part of this so called Digitat trial (Disproportionate Intrauterine Growth Intervention Trial At Term). The study aims to include 325 patients per arm. DISCUSSION: This trial will provide evidence for which strategy is superior in terms of neonatal and maternal morbidity and mortality, costs and maternal quality of life aspects. This will be the first randomised trial for IUGR at term. TRIAL REGISTRATION: Dutch Trial Register and ISRCTN-Register: ISRCTN10363217

    Regulation of Amyloid Precursor Protein Processing by the Beclin 1 Complex

    Get PDF
    Autophagy is an intracellular degradation pathway that functions in protein and organelle turnover in response to starvation and cellular stress. Autophagy is initiated by the formation of a complex containing Beclin 1 (BECN1) and its binding partner Phosphoinositide-3-kinase, class 3 (PIK3C3). Recently, BECN1 deficiency was shown to enhance the pathology of a mouse model of Alzheimer Disease (AD). However, the mechanism by which BECN1 or autophagy mediate these effects are unknown. Here, we report that the levels of Amyloid precursor protein (APP) and its metabolites can be reduced through autophagy activation, indicating that they are a substrate for autophagy. Furthermore, we find that knockdown of Becn1 in cell culture increases the levels of APP and its metabolites. Accumulation of APP and APP C-terminal fragments (APP-CTF) are accompanied by impaired autophagosomal clearance. Pharmacological inhibition of autophagosomal-lysosomal degradation causes a comparable accumulation of APP and APP-metabolites in autophagosomes. Becn1 reduction in cell culture leads to lower levels of its binding partner Pik3c3 and increased presence of Microtubule-associated protein 1, light chain 3 (LC3). Overexpression of Becn1, on the other hand, reduces cellular APP levels. In line with these observations, we detected less BECN1 and PIK3C3 but more LC3 protein in brains of AD patients. We conclude that BECN1 regulates APP processing and turnover. BECN1 is involved in autophagy initiation and autophagosome clearance. Accordingly, BECN1 deficiency disrupts cellular autophagy and autophagosomal-lysosomal degradation and alters APP metabolism. Together, our findings suggest that autophagy and the BECN1-PIK3C3 complex regulate APP processing and play an important role in AD pathology

    Autophagy: Regulation and role in disease

    Full text link

    Prediction of birth weight using the Rossavik growth model:A study in a Dutch population

    No full text
    Objectives: To evaluate the Rossavik growth model for predicting birth weight in a Dutch population and to evaluate growth cessation near term. Study Design: Birth weight was predicted at various ages between 38 and 42 weeks, menstrual age (MA), and at birth age in 50 normal infants using two sets of ultrasound measurements obtained before 28 weeks, MA. Predicted birth weights were compared to actual weights. The mean percentage difference was used as a measure of systematic error and the standard deviation as a measure of random error. Linear regression analysis was used to evaluate the relationship between percentage differences and birth age. To evaluate the individual growth potential, the Growth Potential Realization Index for weight (GPRI(WT)) was determined for each fetus. Results: The predictions at 39 and 39.15 weeks, MA, were accurate without systematic error and with a random error of +/-9.3%. Prediction at 38 weeks showed a statistical underestimation (mean +/- SD = -5.8% +/- 8.8), and statistical overestimations were found for predictions after 39.15 weeks and at birth age. A relationship between percentage differences and birth age was not found for predictions between 39.15 and 40 weeks, MA. These findings indicate that growth cessation occurred at 39.15 weeks, MA. Using birth weights predicted at 39.15 weeks, MA, GPRI(WT) were calculated. The mean GPRI(WT) value was not significantly different from 100% (p > 0.05), and individual GPRI(WT) values ranged from 84% to 114%. Conclusions: The Rossavik growth model can be used to predict birth weight in a Dutch population. However, growth cessation near term appears to occur later than previously reported in other populations. (C) 1997 John Wiley & Sons, Inc

    Reply from the Author

    No full text
    • …
    corecore