65 research outputs found

    Enhanced Performance of Planar Perovskite Solar Cells Using Low-Temperature Solution-Processed Al-Doped SnO\u3csub\u3e2\u3c/sub\u3e as Electron Transport Layers

    Get PDF
    Lead halide perovskite solar cells (PSCs) appear to be the ideal future candidate for photovoltaic applications owing to the rapid development in recent years. The electron transport layers (ETLs) prepared by low-temperature process are essential for widespread implementation and large-scale commercialization of PSCs. Here, we report an effective approach for producing planar PSCs with Al3+ doped SnO2 ETLs prepared by using a low-temperature solution-processed method. The Al dopant in SnO2 enhanced the charge transport behavior of planar PSCs and increased the current density of the devices, compared with the undoped SnO2 ETLs. Moreover, the enhanced electrical property also improved the fill factors (FF) and power conversion efficiency (PCE) of the solar cells. This study has indicated that the low-temperature solution-processed Al-SnO2 is a promising ETL for commercialization of planar PSCs

    Efficient Planar Heterojunction Perovskite Solar Cells with Li-doped Compact TiO\u3csub\u3e2\u3c/sub\u3e Layer

    Get PDF
    Perovskite solar cells (PSCs) have been developed rapidly in recent time, and efficient planar PSCs are regarded as the most promising alternative to the Si solar cells. In this study, we demonstrated that Li-doping of compact TiO2 can reduce the density of electron traps and increase the conductivity of the electron transport layer (ETL) of PSCs. Due to the improved electronic property of ETL, the Li-doped compact TiO2 based planar heterojunction PSCs exhibit negligible hysteretic J-V behavior. Comparing with the undoped compact TiO2 based PSCs, the power conversion efficiency (PCE) of the Li-doped compact TiO2 film based PSCs is improved from 14.2% to 17.1%. Fabrication of highly efficient planar PSCs provides a pathway for commercialization of PSCs

    Enhanced Crystallinity of Triple-Cation Perovskite Film via Doping NH\u3csub\u3e4\u3c/sub\u3eSCN

    Get PDF
    The trap-state density in perovskite films largely determines the photovoltaic performance of perovskite solar cells (PSCs). Increasing the crystal grain size in perovskite films is an effective method to reduce the trap-state density. Here, we have added NH4SCN into perovskite precursor solution to obtain perovskite films with an increased crystal grain size. The perovskite with increased crystal grain size shows a much lower trap-state density compared with reference perovskite films, resulting in an improved photovoltaic performance in PSCs. The champion photovoltaic device has achieved a power conversion efficiency of 19.36%. The proposed method may also impact other optoelectronic devices based on perovskite films

    Beneficial effects of baicalein on a model of allergic rhinitis

    Get PDF
    Allergic rhinitis (AR) is a common disease that causes severe inflammation and even disabilities. Previous studies have reported baicalein to have an anti-inflammatory effect. However, the pharmacological action of baicalein on anaphylaxis has not been clarified yet. This study assessed the in vivo protective effect of baicalein post-treatment in an ameliorating ovalbumin (OVA)-sensitized AR rat model. Baicalein attenuated histological alterations, aberrant tissue repair and inflammation after OVA-induced AR. Baicalein reduced the frequency of nasal/ear rubs and sneezes in rats, and inhibited generation of several inflammatory cytokines (TNF-α, IL-1β, and IL-6) in both blood and nasal lavage of rats. Infiltrations of eosinophils, lymphocyte, and neutrophils were decreased in baicalein-administered rats. Furthermore, baicalein inhibited the expression of STAT3 phosphorylation in the nasal mucosa. In summary, baicalein attenuated OVA-induced AR and inflammation, which suggests it as a promising therapeutic agent for the alleviation of AR-associated inflammation and pathology

    Identification and characterization of maize microRNAs involved in the very early stage of seed germination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are a new class of endogenous small RNAs that play essential regulatory roles in plant growth, development and stress response. Extensive studies of miRNAs have been performed in model plants such as rice, <it>Arabidopsis thaliana </it>and other plants. However, the number of miRNAs discovered in maize is relatively low and little is known about miRNAs involved in the very early stage during seed germination.</p> <p>Results</p> <p>In this study, a small RNA library from maize seed 24 hours after imbibition was sequenced by the Solexa technology. A total of 11,338,273 reads were obtained. 1,047,447 total reads representing 431 unique sRNAs matched to known maize miRNAs. Further analysis confirmed the authenticity of 115 known miRNAs belonging to 24 miRNA families and the discovery of 167 novel miRNAs in maize. Both the known and the novel miRNAs were confirmed by sequencing of a second small RNA library constructed the same way as the one used in the first sequencing. We also found 10 miRNAs that had not been reported in maize, but had been reported in other plant species. All novel sequences had not been earlier described in other plant species. In addition, seven miRNA* sequences were also obtained. Putative targets for 106 novel miRNAs were successfully predicted. Our results indicated that miRNA-mediated gene expression regulation is present in maize imbibed seed.</p> <p>Conclusions</p> <p>This study led to the confirmation of the authenticity of 115 known miRNAs and the discovery of 167 novel miRNAs in maize. Identification of novel miRNAs resulted in significant enrichment of the repertoire of maize miRNAs and provided insights into miRNA regulation of genes expressed in imbibed seed.</p

    A Search for Technosignatures Around 11,680 Stars with the Green Bank Telescope at 1.15-1.73 GHz

    Full text link
    We conducted a search for narrowband radio signals over four observing sessions in 2020-2023 with the L-band receiver (1.15-1.73 GHz) of the 100 m diameter Green Bank Telescope. We pointed the telescope in the directions of 62 TESS Objects of Interest, capturing radio emissions from a total of ~11,680 stars and planetary systems in the ~9 arcminute beam of the telescope. All detections were either automatically rejected or visually inspected and confirmed to be of anthropogenic nature. In this work, we also quantified the end-to-end efficiency of radio SETI pipelines with a signal injection and recovery analysis. The UCLA SETI pipeline recovers 94.0% of the injected signals over the usable frequency range of the receiver and 98.7% of the injections when regions of dense RFI are excluded. In another pipeline that uses incoherent sums of 51 consecutive spectra, the recovery rate is ~15 times smaller at ~6%. The pipeline efficiency affects calculations of transmitter prevalence and SETI search volume. Accordingly, we developed an improved Drake Figure of Merit and a formalism to place upper limits on transmitter prevalence that take the pipeline efficiency and transmitter duty cycle into account. Based on our observations, we can state at the 95% confidence level that fewer than 6.6% of stars within 100 pc host a transmitter that is detectable in our search (EIRP > 1e13 W). For stars within 20,000 ly, the fraction of stars with detectable transmitters (EIRP > 5e16 W) is at most 3e-4. Finally, we showed that the UCLA SETI pipeline natively detects the signals detected with AI techniques by Ma et al. (2023).Comment: 22 pages, 9 figures, submitted to AJ, revise

    Influence of expansion rate on circumferential residual stress distribution of expandable casing

    No full text
    To study the distribution law of circumferential residual stress after casing expansion, using the finite element explicit dynamic analysis method analyzed the expansion process of expandable casings under different expansion rates. The analysis obtained key technical parameters of circumferential residual stress, average circumferential residual stress and elastic recovery along the wall thickness direction after casing expansion. It is recognized that the maximum residual tensile stress after casing expansion locates in the middle part of the casing thickness direction. The maximum residual compressive stress locates in the outer wall of the casing. When the expansion rate exceeds 18%, the increase in expansion rate will not lead to an increase in circumferential residual stress after casing expansion. The elastic recovery after casing expansion will reduce the circumferential stress during the expansion process. Considering collapse strength and the influence of elastic recovery on casing patch sealing performance after casing expansion, 23% is the most suitable expansion rate, which can effectively reduce the circumferential residual stress and improve the casing collapse strength. The analysis in this paper can provide bases for the calculation of casing collapse strength after expansion

    Active Power Cooperative Control for Wind Power Clusters with Multiple Temporal and Spatial Scales

    No full text
    To improve the control of active power in wind power clusters, an active power hierarchical predictive control method with multiple temporal and spatial scales is proposed. First, the method from the spatial scale divides the wind power clusters into the cluster control layer, sub-cluster coordination layer and single wind farm power regulation layer. Simultaneously, from the temporal scale, the predicted data are divided layer by layer: the 15 min power prediction is deployed for the first layer; the 5 min power prediction is employed for the second layer; the 1 min power prediction is adopted for the third layer. Secondly, the prediction model was developed, and each hierarchical prediction was optimized using MPC. Thirdly, wind farms are dynamically clustered, and then the output power priority of wind farms is established. In addition, the active power of each wind farm is controlled according to the error between the dispatch value and the real-time power with feedback correction so that each wind farm achieves cooperative control with optimal power output. Finally, combined with the simulation of practical wind power clusters, the results show that the wind abandonment rate was reduced by 2.13%, and the dispatch of the blindness was overcome compared with the fixed proportional strategy. Therefore, this method can improve the efficiency of cooperative power generation

    Active Power Cooperative Control for Wind Power Clusters with Multiple Temporal and Spatial Scales

    No full text
    To improve the control of active power in wind power clusters, an active power hierarchical predictive control method with multiple temporal and spatial scales is proposed. First, the method from the spatial scale divides the wind power clusters into the cluster control layer, sub-cluster coordination layer and single wind farm power regulation layer. Simultaneously, from the temporal scale, the predicted data are divided layer by layer: the 15 min power prediction is deployed for the first layer; the 5 min power prediction is employed for the second layer; the 1 min power prediction is adopted for the third layer. Secondly, the prediction model was developed, and each hierarchical prediction was optimized using MPC. Thirdly, wind farms are dynamically clustered, and then the output power priority of wind farms is established. In addition, the active power of each wind farm is controlled according to the error between the dispatch value and the real-time power with feedback correction so that each wind farm achieves cooperative control with optimal power output. Finally, combined with the simulation of practical wind power clusters, the results show that the wind abandonment rate was reduced by 2.13%, and the dispatch of the blindness was overcome compared with the fixed proportional strategy. Therefore, this method can improve the efficiency of cooperative power generation
    corecore