13 research outputs found

    An operational model for capturing grape ripening dynamics to support harvest decisions

    Get PDF
    Grape ripening is a critical phenological phase during which many metabolites that impact wine quality accumulate in the berries. Major changes in berry composition include a rapid increase in sugar and a decrease in malic acid content and concentration. Its duration is highly variable depending on grapevine variety, climatic parameters, soil type and management practices. Together with the timing of mid-veraison, this duration determines when grapes can be harvested. Viticulturists and winemakers monitor the sugar-to-total acidity ratio (S/TA) during grape ripening and start harvesting grapes when this ratio reaches the optimum value for the desired wine style. The S/TA ratio evolves linearly as a function of thermal summation during the first four weeks following the onset of ripening. The linearity of the evolution of the S/TA ratio as a function of thermal time during the first four weeks following mid-veraison is applied in this study on two large data sets encompassing (1) 53 varieties studied during 10 years with two to four replicates for each combination of year and cultivar and (2) two varieties, cultivated on three soil types over 13 years. Grape ripening speed is highly variable. The effects of the year impact ripening speed more than the effects of the soil or the variety, although all three effects are highly significant. Grape ripening speed decreases with berry weight and also varies with vine water status. By using this approach, viticulturists and winemakers can assess four weeks after mid-veraison, for each individual vineyard parcel, at what speed grape ripening progresses. Combined with precise mid-veraison scoring, expertise from previous vintages and complementary approaches like sensory assessment of berries, it allows harvest date estimates to be fine-tuned. The results of this study can also be used to identify slow ripening varies, which are better performing in warm climates and, thus, better adapted to climate change

    Variety-specific response of bulk stomatal conductance of grapevine canopies to changes in net radiation, atmospheric demand, and drought stress

    Get PDF
    In wine growing regions around the world, climate change has the potential to affect vine transpiration and overall vineyard water use due to related changes in daily atmospheric conditions and soil water deficits. Grapevines control their transpiration in response to such changes by regulating conductance of water through the soil-plant-atmosphere continuum. The response of bulk stomatal conductance, the vine canopy equivalent of stomatal conductance, to such changes were studied on Cabernet-Sauvignon, Merlot, Tempranillo, Ugni blanc, and Semillon vines in a non-irrigated vineyard in Bordeaux France. Whole-vine sap flow, temperature and humidity in the vine canopy, and net radiation absorbed by the vine canopy were measured on 15-minute intervals from early July through mid-September 2020, together with periodic measurements of leaf area, canopy porosity, and predawn leaf water potential. From these data, bulk stomatal conductance was calculated on 15-minute intervals, and multiple linear regression analysis was performed to identify key variables and their relative effect on conductance. For the regression analysis, attention was focused on addressing non-linearity and collinearity in the explanatory variables and developing a model that was readily interpretable.Variability of vapour pressure deficit in the vine canopy over the day and predawn water potential over the season explained much of the variability in bulk stomatal conductance overall, with relative differences between varieties appearing to be driven in large part by differences in conductance response to predawn water potential between the varieties. Transpiration simulations based on the regression equations found similar differences between varieties in terms of daily and seasonal transpiration. These simulations also compared well with those from an accepted vineyard water balance model, although there appeared to be differences between the two approaches in the rate at which conductance, and hence transpiration is reduced as a function of decreasing soil water content (i.e., increasing water deficit stress). By better characterizing the response of bulk stomatal conductance, the dynamics of vine transpiration can be better parameterized in vineyard water use modeling of current and future climate scenarios.COntinental To coastal Ecosystems: evolution, adaptability and governanc

    Phenological Model Intercomparison for Estimating Grapevine Budbreak Date (Vitis vinifera L.) in Europe

    Get PDF
    Budbreak date in grapevine is strictly dependent on temperature, and the correct simulation of its occurrence is of great interest since it may have major consequences on the final yield and quality. In this study, we evaluated the reliability for budbreak simulation of two modeling approaches, the chilling-forcing (CF), which describes the entire dormancy period (endo- and eco-dormancy) and the forcing approach (F), which only describes the eco-dormancy. For this, we selected six phenological models that apply CF and F in different ways, which were tested on budbreak simulation of eight grapevine varieties cultivated at different latitudes in Europe. Although none of the compared models showed a clear supremacy over the others, models based on CF showed a generally higher estimation accuracy than F where fixed starting dates were adopted. In the latter models, the accurate simulation of budbreak was dependent on the selection of the starting date for forcing accumulation that changes according to the latitude, whereas CF models were independent. Indeed, distinct thermal requirements were found for the grapevine varieties cultivated in Northern and Southern Europe. This implies the need to improve modeling of the dormancy period to avoid under- or over-estimations of budbreak date under different environmental conditions.This research was funded by the European Union’s Horizon 2020 Research and Innovation Programme, under the Clim4Vitis project: “Climate change impact mitigation for European viticulture: knowledge transfer for an integrated approach”, grant agreement no. 810176. It was also supported by FCT-Portuguese Foundation for Science and Technology, under the project UIDB/04033/2020 and the French National Research Agency (ANR) in the frame of the Investments for the Future Program, within the cluster of excellence COTE (ANR-10-LABX-45)

    Varietal responses to soil water deficit: first results from a common-garden vineyard near Bordeaux France

    No full text
    In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will both lower soil water availability and increase evaporative demand in vineyards, thereby increasing soil water deficits and associated vine stress. Grapevines control their water status by regulating stomatal closure and other changes to internal plant hydraulics. These responses are complex and have not been clearly characterized across a wide range of different Vitis vinifera varieties. Understanding how vine water status responds to changes in soil water deficits and other variables will help growers modify vineyard design and management practices to meet their quality and yield objectives. Carbon isotope discrimination measurements of certain plant tissues have been shown to provide effective characterization of stomatal closure, while water potential measurements provide a well-proven measure of overall vine water status. Using replicated data collected from an experimental common-garden vineyard at the Institut des Sciences de la Vigne et du Vin (ISVV) near Bordeaux, France, this project will analyze the effects on carbon isotope discrimination across 39 varieties and water potential across eight varieties against estimates of soil water deficits made using a water balance model running on local meteorology and considering the phenology of each variety. Similar to the literature, preliminary analysis finds as soil water deficit increases, carbon isotope data suggests greater stomatal closure and water potential measurements indicate greater vine stress. For both parameters, analysis will be performed to distinguish any difference in these responses between varieties

    Varietal responses to soil water deficit: first results from a common-garden vineyard near Bordeaux France

    Get PDF
    In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will both lower soil water availability and increase evaporative demand in vineyards, thereby increasing soil water deficits and associated vine stress. Grapevines control their water status by regulating stomatal closure and other changes to internal plant hydraulics. These responses are complex and have not been clearly characterized across a wide range of different Vitis vinifera varieties. Understanding how vine water status responds to changes in soil water deficits and other variables will help growers modify vineyard design and management practices to meet their quality and yield objectives. Carbon isotope discrimination measurements of certain plant tissues have been shown to provide effective characterization of stomatal closure, while water potential measurements provide a well-proven measure of overall vine water status. Using replicated data collected from an experimental common-garden vineyard at the Institut des Sciences de la Vigne et du Vin (ISVV) near Bordeaux, France, this project will analyze the effects on carbon isotope discrimination across 39 varieties and water potential across eight varieties against estimates of soil water deficits made using a water balance model running on local meteorology and considering the phenology of each variety. Similar to the literature, preliminary analysis finds as soil water deficit increases, carbon isotope data suggests greater stomatal closure and water potential measurements indicate greater vine stress. For both parameters, analysis will be performed to distinguish any difference in these responses between varieties

    Carbon isotope discrimination (so-called δ<sup>13</sup>C) measured on grape juice is an accessible tool to monitor vine water status in production conditions

    No full text
    Assessment of vine water status is needed to understand the effect of environmental factors and management practices on dry-farmed and irrigated vineyards. Among plant-based indicators, carbon isotope discrimination (δ13C) is easily accessible, reliable, and inexpensive. As it provides a post-hoc assessment of vine water status during the berry ripening period, it can be useful for assessing the results of vineyard management practices during the season, and to map water status in the vineyard to aid in future precision management. Possible applications and limitations of this technique for practical vineyard management are discussed in this article
    corecore