7 research outputs found

    Effects of exemestane and letrozole therapy on plasma concentrations of estrogens in a randomized trial of postmenopausal women with breast cancer

    Get PDF
    PURPOSE: Inter-individual differences in estrogen concentrations during treatment with aromatase inhibitors (AIs) may contribute to therapeutic response and toxicity. The aim of this study was to determine plasma concentrations of estradiol (E2), estrone (E1), and estrone sulfate (E1S) in a large cohort of AI-treated breast cancer patients. METHODS: In a randomized, multicenter trial of postmenopausal women with early-stage breast cancer starting treatment with letrozole (n = 241) or exemestane (n = 228), plasma estrogen concentrations at baseline and after 3 months were quantitated using a sensitive mass spectrometry-based assay. Concentrations and suppression below the lower limit of quantification (LLOQ) were compared between estrogens and between drugs. RESULTS: The ranges of baseline estrogen concentrations were <LLOQ-361 pg/mL for E2, <LLOQ-190 pg/mL for E1, and 8.3-4060 pg/mL for E1S. For E2, the frequency of suppression below the LLOQ was not statistically significantly different between AIs (exemestane: 89.0%, letrozole: 86.9%, p = 0.51). However, patients on letrozole were more likely to achieve suppression below the LLOQ of both E1 (exemestane: 80.1%, letrozole: 90.1%, p = 0.005) and E1S (exemestane: 17.4%, letrozole: 54.9%, p = 4.34e-15). After 3 months of AI therapy, the ranges of estrogen concentrations were <LLOQ-63.8 pg/mL, <LLOQ-36.7 pg/mL, and <LLOQ-1090 pg/mL for E2, E1, and E1S, respectively. During treatment, 16 patients had an increased concentration compared to the baseline concentration of at least one estrogen. CONCLUSIONS: Letrozole had greater suppression of plasma E1 and E1S than exemestane, though the response was highly variable among patients. Additional research is required to examine the clinical relevance of differential estrogen suppression

    Association between CYP2D6 genotype and tamoxifen-induced hot flashes in a prospective cohort

    Get PDF
    Women with reduced CYP2D6 activity have low endoxifen concentrations and likely worse long term benefits from tamoxifen. We investigated the association between CYP2D6 genotype and tamoxifen-induced hot flashes in a prospective cohort. We collected hot flash frequency and severity data over 12 months from 297 women initiating tamoxifen. We performed CYP2D6 genotyping using the AmpliChip CYP450 test and correlated inherited genetic polymorphisms in CYP2D6 and tamoxifen-induced hot flashes. Intermediate metabolizers had greater mean hot flash scores after 4 months of tamoxifen therapy (44.3) compared to poor metabolizers (20.6, P = 0.038) or extensive metabolizers (26.9, P = 0.011). At 4 months, we observed a trend toward fewer severe hot flashes in poor metabolizers compared to intermediate plus extensive metabolizers (P = 0.062). CYP2D6 activity may be a modest predictive factor for tamoxifen-induced hot flashes. The presence or absence of hot flashes should not be used to determine tamoxifen's efficacy

    Patient‐Reported Outcomes and Early Discontinuation in Aromatase Inhibitor‐Treated Postmenopausal Women With Early Stage Breast Cancer

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/139968/1/onco0539-sup-0002.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139968/2/onco0539.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/139968/3/onco0539-sup-0001.pd
    corecore