125 research outputs found

    Morphologies of three-dimensional shear bands in granular media

    Full text link
    We present numerical results on spontaneous symmetry breaking strain localization in axisymmetric triaxial shear tests of granular materials. We simulated shear band formation using three-dimensional Distinct Element Method with spherical particles. We demonstrate that the local shear intensity, the angular velocity of the grains, the coordination number, and the local void ratio are correlated and any of them can be used to identify shear bands, however the latter two are less sensitive. The calculated shear band morphologies are in good agreement with those found experimentally. We show that boundary conditions play an important role. We discuss the formation mechanism of shear bands in the light of our observations and compare the results with experiments. At large strains, with enforced symmetry, we found strain hardening.Comment: 6 pages 5 figures, low resolution figures

    Critical packing in granular shear bands

    Full text link
    In a realistic three-dimensional setup, we simulate the slow deformation of idealized granular media composed of spheres undergoing an axisymmetric triaxial shear test. We follow the self-organization of the spontaneous strain localization process leading to a shear band and demonstrate the existence of a critical packing density inside this failure zone. The asymptotic criticality arising from the dynamic equilibrium of dilation and compaction is found to be restricted to the shear band, while the density outside of it keeps the memory of the initial packing. The critical density of the shear band depends on friction (and grain geometry) and in the limit of infinite friction it defines a specific packing state, namely the \emph{dynamic random loose packing}

    Feeding chicory (Cichorium intybus) selectively reduces Ostertagia ostertagi infection levels in cattle

    Get PDF
    Objectives: Studies were conducted to test the potential use of chicory against gastrointestinal nematode infections in cattle. Methods: In study 1, fifteen 2-4 months-old dairy calves were allocated into a chicory (CHI, n=9) or control (CTL, n=6) group. CHI and CTL were stabled and fed with chicory silage or hay, resp., ad lib for 56 days. Protein/energy intakes were equalized between groups throughout the study. After 14 days on the diet all calves were infected with 10,000 Ostertagia ostertagi and 66,000 Cooperia oncophora third-stage (L3) larvae. In study 2, twenty 4-6 months-old dairy calves grazed a second-year, pure chicory sward (CHI, n=10) or a ryegrass/white clover pasture (CTL, n=10) for 43 days. After 7 days on the diet all calves were infected with 20,000 O. ostertagi L3. In both studies, individual live weights were recorded and faecal egg counts were calculated as number of eggs per g of dried feces (FECDM). At day 56 (study 1) calves were killed for worm recovery. Live weights and log-transformed FECDM were analysed by ANOVA using repeated measurements. Log-transformed worm counts were analysed by t-test. Results: In study 1 daily live weight gains were 500 and 329 g/day in CHI and CTL animals, resp. (p=0.02). Mean FECDM were not significantly different between groups (p=0.19). O. ostertagi geo mean worm counts were 1599 (± 296) and 3752 (± 258) in CHI and CTL groups, resp. (p0.05). From this point, egg excretion in CHI calves was significantly reduced and by day 36 post-infection FECDM was decreased by 48-65% compared to CTL (P<0.05). Discussion: Feeding on a chicory diet demonstrated a marked anthelmintic effect against O. ostertagi in both trials, whereas C. oncophora in study 1 was unaffected. Apparently, chicory does not interfere with worm establishment of O. ostertagi but significantly reduces egg excretion and adult worm counts. The lower weight gains in study 2 probably reflect lower energy consumption in this group and suggest that duration of grazing of pure chicory should be limited to selectively target established O. ostertagi adult populations

    Contact dynamics in a gently vibrated granular pile

    Full text link
    We use multi-speckle diffusive wave spectroscopy (MSDWS) to probe the micron-scale dynamics of a granular pile submitted to discrete gentle taps. The typical time-scale between plastic events is found to increase dramatically with the number of applied taps. Furthermore, this microscopic dynamics weakly depends on the solid fraction of the sample. This process is strongly analogous to the aging phenomenon observed in thermal glassy systems. We propose a heuristic model where this slowing down mechanism is associated with a slow evolution of the distribution of the contact forces between particles. This model accounts for the main features of the observed dynamics.Comment: 4 pages, 4 figure

    Anomalous acoustic reflection on a sliding interface or a shear band

    Full text link
    We study the reflection of an acoustic plane wave from a steadily sliding planar interface with velocity strengthening friction or a shear band in a confined granular medium. The corresponding acoustic impedance is utterly different from that of the static interface. In particular, the system being open, the energy of an in-plane polarized wave is no longer conserved, the work of the external pulling force being partitioned between frictional dissipation and gain (of either sign) of coherent acoustic energy. Large values of the friction coefficient favor energy gain, while velocity strengthening tends to suppress it. An interface with infinite elastic contrast (one rigid medium) and V-independent (Coulomb) friction exhibits spontaneous acoustic emission, as already shown by M. Nosonovsky and G.G. Adams (Int. J. Ing. Sci., {\bf 39}, 1257 (2001)). But this pathology is cured by any finite elastic contrast, or by a moderately large V-strengthening of friction. We show that (i) positive gain should be observable for rough-on-flat multicontact interfaces (ii) a sliding shear band in a granular medium should give rise to sizeable reflection, which opens a promising possibility for the detection of shear localization.Comment: 13 pages, 10 figure

    Plastic Flow in Two-Dimensional Solids

    Get PDF
    A time-dependent Ginzburg-Landau model of plastic deformation in two-dimensional solids is presented. The fundamental dynamic variables are the displacement field \bi u and the lattice velocity {\bi v}=\p {\bi u}/\p t. Damping is assumed to arise from the shear viscosity in the momentum equation. The elastic energy density is a periodic function of the shear and tetragonal strains, which enables formation of slips at large strains. In this work we neglect defects such as vacancies, interstitials, or grain boundaries. The simplest slip consists of two edge dislocations with opposite Burgers vectors. The formation energy of a slip is minimized if its orientation is parallel or perpendicular to the flow in simple shear deformation and if it makes angles of ±π/4\pm \pi/4 with respect to the stretched direction in uniaxial stretching. High-density dislocations produced in plastic flow do not disappear even if the flow is stopped. Thus large applied strains give rise to metastable, structurally disordered states. We divide the elastic energy into an elastic part due to affine deformation and a defect part. The latter represents degree of disorder and is nearly constant in plastic flow under cyclic straining.Comment: 16pages, Figures can be obtained at http://stat.scphys.kyoto-u.ac.jp/index-e.htm

    Sheared Solid Materials

    Full text link
    We present a time-dependent Ginzburg-Landau model of nonlinear elasticity in solid materials. We assume that the elastic energy density is a periodic function of the shear and tetragonal strains owing to the underlying lattice structure. With this new ingredient, solving the equations yields formation of dislocation dipoles or slips. In plastic flow high-density dislocations emerge at large strains to accumulate and grow into shear bands where the strains are localized. In addition to the elastic displacement, we also introduce the local free volume {\it m}. For very small mm the defect structures are metastable and long-lived where the dislocations are pinned by the Peierls potential barrier. However, if the shear modulus decreases with increasing {\it m}, accumulation of {\it m} around dislocation cores eventually breaks the Peierls potential leading to slow relaxations in the stress and the free energy (aging). As another application of our scheme, we also study dislocation formation in two-phase alloys (coherency loss) under shear strains, where dislocations glide preferentially in the softer regions and are trapped at the interfaces.Comment: 16pages, 11figure
    • 

    corecore