11 research outputs found

    10 Years of Environmental Change on the Slopes of Mount Kilimanjaro and Its Associated Shift in Malaria Vector Distributions.

    Get PDF
    INTRODUCTION: Malaria prevalence has declined in the Kilimanjaro region of Tanzania over the past 10 years, particularly at lower altitudes. While this decline has been related to the scale-up of long-lasting insecticidal nets to achieve universal coverage targets, it has also been attributed to changes in environmental factors that are important for enabling and sustaining malaria transmission. OBJECTIVES: Herein, we apply spatial analytical approaches to investigate the impact of environmental and demographic changes, including changes in temperature, precipitation, land cover, and population density, on the range of the major malaria vector species Anopheles arabiensis in two districts of Tanzania, situated on the southern slope of Mount Kilimanjaro. These models are used to identify environmental changes that have occurred over a 10-year period and highlight the implications for malaria transmission in this highland region. METHODS: Entomological data were collected from the Hai and Lower Moshi districts of Tanzania in 2001-2004 and 2014-2015. Vector occurrence data were applied alongside satellite remote sensing indices of climate and land cover, and gridded population data, to develop species distribution models for An. arabiensis for the 2004 and 2014 periods using maximum entropy. Models were compared to assess the relative contribution of different environmental and demographic factors to observed trends in vector species distribution in lowland and highland areas. RESULTS: Changes in land cover were observed in addition to increased population densities, increased warm season temperature, and decreased wetness at low altitudes. The predicted area and extent of suitable habitat for An. arabiensis declined across the study area over the 10-year period, with notable contraction at lower altitudes, while species range in higher altitude zones expanded. Importantly, deforestation and warmer temperatures at higher altitudes may have created stable areas of suitable vector habitat in the highlands capable of sustaining malaria transmission. CONCLUSION: We show that environmental changes have had an important influence on the distribution of malaria vector species in a highland area of northern Tanzania. Highland areas may be at continued risk for sporadic malaria outbreaks despite the overall range contraction of principal vector species at lower altitudes, where malaria transmission remains at low intensity

    Regression model goodness-of-fit.

    No full text
    <p>Area of predicted malaria vector habitat improves the goodness-of-fit of models of malaria prevalence, assessed by regression of observed versus predicted malaria prevalence in children 2 to 9 years old. Assessments were performed for (A) an ordinary least squares regression model of <i>P. falciparum</i> prevalence as a function of altitude, and (B) a conditional autoregressive model of <i>P. falciparum</i> prevalence as a function of altitude and habitat. Data points represent 24 villages in north eastern Tanzania. The 1:1 line is shown for reference.</p

    Map of study area in north eastern Tanzania.

    No full text
    <p>Map of study area in north eastern Tanzania.</p

    Categorical map of predicted malaria prevalence.

    No full text
    <p>Predicted <i>P. falciparum</i> prevalence in children 2 to 9 years old as a function of altitude and vector habitat availability within 1.5 km of grid cells (predicted from niche models) is shown on a categorical scale.</p

    Continuous map of predicted malaria prevalence.

    No full text
    <p>Predicted <i>P. falciparum</i> prevalence in children 2 to 9 years old as a function of altitude and vector habitat availability within 1.5 km of grid cells (predicted from niche models) is shown at 30×30 metre resolution on a continuous scale.</p

    Malaria vector niche models.

    No full text
    <p>Models show the area of predicted suitable habitat (shaded area) at a resolution of 30×30 metres across north eastern Tanzania for the dominant malaria vector species, <i>An. arabiensis</i>, <i>An. gambiae</i> s.s. and <i>An. funestus</i> s.l.</p
    corecore