90 research outputs found

    Nonequilibrium steady states in sheared binary fluids

    Full text link
    We simulate by lattice Boltzmann the steady shearing of a binary fluid mixture undergoing phase separation with full hydrodynamics in two dimensions. Contrary to some theoretical scenarios, a dynamical steady state is attained with finite domain lengths Lx,yL_{x,y} in the directions (x,y)x,y) of velocity and velocity gradient. Apparent scaling exponents are estimated as Lx∼γ˙−2/3L_{x}\sim\dot{\gamma}^{-2/3} and Ly∼γ˙−3/4L_{y}\sim\dot{\gamma}^{-3/4}. We discuss the relative roles of diffusivity and hydrodynamics in attaining steady state.Comment: 4 pages, 3 figure

    Binary fluids under steady shear in three dimensions

    Full text link
    We simulate by lattice Boltzmann the steady shearing of a binary fluid mixture with full hydrodynamics in three dimensions. Contrary to some theoretical scenarios, a dynamical steady state is attained with finite correlation lengths in all three spatial directions. Using large simulations we obtain at moderately high Reynolds numbers apparent scaling expon ents comparable to those found by us previously in 2D. However, in 3D there may be a crossover to different behavior at low Reynolds number: accessing this regime requires even larger computational resource than used here.Comment: 4 pages, 3 figure

    Lattice Boltzmann for Binary Fluids with Suspended Colloids

    Full text link
    A new description of the binary fluid problem via the lattice Boltzmann method is presented which highlights the use of the moments in constructing two equilibrium distribution functions. This offers a number of benefits, including better isotropy, and a more natural route to the inclusion of multiple relaxation times for the binary fluid problem. In addition, the implementation of solid colloidal particles suspended in the binary mixture is addressed, which extends the solid-fluid boundary conditions for mass and momentum to include a single conserved compositional order parameter. A number of simple benchmark problems involving a single particle at or near a fluid-fluid interface are undertaken and show good agreement with available theoretical or numerical results.Comment: 10 pages, 4 figures, ICMMES 200

    Role of inertia in two-dimensional deformation and breakup of a droplet

    Full text link
    We investigate by Lattice Boltzmann methods the effect of inertia on the deformation and break-up of a two-dimensional fluid droplet surrounded by fluid of equal viscosity (in a confined geometry) whose shear rate is increased very slowly. We give evidence that in two dimensions inertia is {\em necessary} for break-up, so that at zero Reynolds number the droplet deforms indefinitely without breaking. We identify two different routes to breakup via two-lobed and three-lobed structures respectively, and give evidence for a sharp transition between these routes as parameters are varied.Comment: 4 pages, 4 figure

    Growth saturation of unstable thin films on transverse-striped hydrophilic-hydrophobic micropatterns

    Full text link
    Using three-dimensional numerical simulations, we demonstrate the growth saturation of an unstable thin liquid film on micropatterned hydrophilic-hydrophobic substrates. We consider different transverse-striped micropatterns, characterized by the total fraction of hydrophilic coverage and the width of the hydrophilic stripes. We compare the growth of the film on the micropatterns to the steady states observed on homogeneous substrates, which correspond to a saturated sawtooth and growing finger configurations for hydrophilic and hydrophobic substrates, respectively. The proposed micropatterns trigger an alternating fingering-spreading dynamics of the film, which leads to a complete suppression of the contact line growth above a critical fraction of hydrophilic stripes. Furthermore, we find that increasing the width of the hydrophilic stripes slows down the advancing front, giving smaller critical fractions the wider the hydrophilic stripes are. Using analytical approximations, we quantitatively predict the growth rate of the contact line as a function of the covering fraction, and predict the threshold fraction for saturation as a function of the stripe width.Comment: 11 pages, 5 figure

    3D Spinodal Decomposition in the Inertial Regime

    Full text link
    We simulate late-stage coarsening of a 3D symmetric binary fluid using a lattice Boltzmann method. With reduced lengths and times l and t respectively (scales set by viscosity, density and surface tension) our data sets cover 1 < l 100 we find clear evidence of Furukawa's inertial scaling (l ~ t^{2/3}), although the crossover from the viscous regime (l ~ t) is very broad. Though it cannot be ruled out, we find no indication that Re is self-limiting (l ~ t^{1/2}) as proposed by M. Grant and K. R. Elder [Phys. Rev. Lett. 82, 14 (1999)].Comment: 4 pages, 3 eps figures, RevTex, minor changes to bring in line with published version. Mobility values added to Table

    Persistence exponents in a 3D symmetric binary fluid mixture

    Full text link
    The persistence exponent, theta, is defined by N_F sim t^theta, where t is the time since the start of the coarsening process and the "no-flip fraction", N_F, is the number of points that have not seen a change of "color" since t=0. Here we investigate numerically the persistence exponent for a binary fluid system where the coarsening is dominated by hydrodynamic transport. We find that N_F follows a power law decay (as opposed to exponential) with the value of theta somewhat dependent on the domain growth rate (L sim t^alpha, where L is the average domain size), in the range theta=1.23 +-0.1 (alpha = 2/3) to theta=1.37 +-0.2 (alpha=1). These alpha values correspond to the inertial and viscous hydrodynamic regimes respectively.Comment: 9 pages RevTex, 9 figures included as eps files on last 3 pages, submitted to Phys Rev

    Dynamics of gravity driven three-dimensional thin films on hydrophilic-hydrophobic patterned substrates

    Full text link
    We investigate numerically the dynamics of unstable gravity driven three-dimensional thin liquid films on hydrophilic-hydrophobic patterned substrates of longitudinal stripes and checkerboard arrangements. The thin film can be guided preferentially on hydrophilic longitudinal stripes, while fingers develop on adjacent hydrophobic stripes if their width is large enough. On checkerboard patterns, the film fingering occurs on hydrophobic domains, while lateral spreading is favoured on hydrophilic domains, providing a mechanism to tune the growth rate of the film. By means of kinematical arguments, we quantitatively predict the growth rate of the contact line on checkerboard arrangements, providing a first step towards potential techniques that control thin film growth in experimental setups.Comment: 30 pages, 12 figure
    • …
    corecore