716 research outputs found
Thermal stability of metastable magnetic skyrmions: Entropic narrowing and significance of internal eigenmodes
We compute annihilation rates of metastable magnetic skyrmions using a form
of Langer's theory in the intermediate-to-high damping (IHD) regime. For a
N\'eel skyrmion, a Bloch skyrmion, and an antiskyrmion, we look at two possible
paths to annihilation: collapse and escape through a boundary. We also study
the effects of a curved vs. a flat boundary, a second skyrmion and a
non-magnetic defect. We find that the skyrmion's internal modes play a dominant
role in the thermally activated transitions compared to the spin-wave
excitations and that the relative contribution of internal modes depends on the
nature of the transition process. Our calculations for a small skyrmion
stabilized at zero-field show that collapse on a defect is the most probable
path. In the absence of a defect, the annihilation is largely dominated by
escape mechanisms, even though in this case the activation energy is higher
than that of collapse processes. Escape through a flat boundary is found more
probable than through a curved boundary. The potential source of stability of
metastable skyrmions is therefore found not to lie in high activation energies,
nor in the dynamics at the transition state, but comes from entropic narrowing
in the saddle point region which leads to lowered attempt frequencies. This
narrowing effect is found to be primarily associated with the skyrmion's
internal modes.Comment: 14 pages, 9 figure
Path sampling for lifetimes of metastable magnetic skyrmions and direct comparison with Kramers' method
We perform a direct comparison between Kramers' method in many dimensions --
i.e., Langer's theory -- adapted to magnetic spin systems, and a path sampling
method in the form of forward flux sampling, as a means to compute collapse
rates of metastable magnetic skyrmions. We show that a good agreement is
obtained between the two methods. We report variations of the attempt frequency
associated with skyrmion collapse by three to four orders of magnitude when
varying the applied magnetic field by 5 of the exchange strength, which
confirms the existence of a strong entropic contribution to the lifetime of
skyrmions. This demonstrates that in complex systems, the knowledge of the rate
prefactor, in addition to the internal energy barrier, is essential in order to
properly estimate a lifetime.Comment: 5 pages, 5 figures (main text), 8 pages including supplemental
materia
Colloidal Jamming at Interfaces: a Route to Fluid-bicontinuous Gels
Colloidal particles or nanoparticles, with equal affinity for two fluids, are
known to adsorb irreversibly to the fluid-fluid interface. We present
large-scale computer simulations of the demixing of a binary solvent containing
such particles. The newly formed interface sequesters the colloidal particles;
as the interface coarsens, the particles are forced into close contact by
interfacial tension. Coarsening is dramatically curtailed, and the jammed
colloidal layer seemingly enters a glassy state, creating a multiply connected,
solid-like film in three dimensions. The resulting gel contains percolating
domains of both fluids, with possible uses as, for example, a microreaction
medium
Inertial effects in three dimensional spinodal decomposition of a symmetric binary fluid mixture: A lattice Boltzmann study
The late-stage demixing following spinodal decomposition of a
three-dimensional symmetric binary fluid mixture is studied numerically, using
a thermodynamicaly consistent lattice Boltzmann method. We combine results from
simulations with different numerical parameters to obtain an unprecendented
range of length and time scales when expressed in reduced physical units. Using
eight large (256^3) runs, the resulting composite graph of reduced domain size
l against reduced time t covers 1 < l < 10^5, 10 < t < 10^8. Our data is
consistent with the dynamical scaling hypothesis, that l(t) is a universal
scaling curve. We give the first detailed statistical analysis of fluid motion,
rather than just domain evolution, in simulations of this kind, and introduce
scaling plots for several quantities derived from the fluid velocity and
velocity gradient fields.Comment: 49 pages, latex, J. Fluid Mech. style, 48 embedded eps figs plus 6
colour jpegs for Fig 10 on p.2
Nonequilibrium steady states in sheared binary fluids
We simulate by lattice Boltzmann the steady shearing of a binary fluid
mixture undergoing phase separation with full hydrodynamics in two dimensions.
Contrary to some theoretical scenarios, a dynamical steady state is attained
with finite domain lengths in the directions ( of velocity and
velocity gradient. Apparent scaling exponents are estimated as
and . We discuss
the relative roles of diffusivity and hydrodynamics in attaining steady state.Comment: 4 pages, 3 figure
Binary fluids under steady shear in three dimensions
We simulate by lattice Boltzmann the steady shearing of a binary fluid
mixture with full hydrodynamics in three dimensions. Contrary to some
theoretical scenarios, a dynamical steady state is attained with finite
correlation lengths in all three spatial directions. Using large simulations we
obtain at moderately high Reynolds numbers apparent scaling expon ents
comparable to those found by us previously in 2D. However, in 3D there may be a
crossover to different behavior at low Reynolds number: accessing this regime
requires even larger computational resource than used here.Comment: 4 pages, 3 figure
Lattice Boltzmann for Binary Fluids with Suspended Colloids
A new description of the binary fluid problem via the lattice Boltzmann
method is presented which highlights the use of the moments in constructing two
equilibrium distribution functions. This offers a number of benefits, including
better isotropy, and a more natural route to the inclusion of multiple
relaxation times for the binary fluid problem. In addition, the implementation
of solid colloidal particles suspended in the binary mixture is addressed,
which extends the solid-fluid boundary conditions for mass and momentum to
include a single conserved compositional order parameter. A number of simple
benchmark problems involving a single particle at or near a fluid-fluid
interface are undertaken and show good agreement with available theoretical or
numerical results.Comment: 10 pages, 4 figures, ICMMES 200
- …
