220 research outputs found

    Toward scalable information processing with ultracold polar molecules in an electric field: a numerical investigation

    Full text link
    We numerically investigate the possibilities of driving quantum algorithms with laser pulses in a register of ultracold NaCs polar molecules in a static electric field. We focuse on the possibilities of performing scalable logical operations by considering circuits that involve intermolecular gates (implemented on adjacent interacting molecules) to enable the transfer of information from one molecule to another during conditional laser-driven population inversions. We study the implementation of an arithmetic operation (the addition of 0 or 1 on a binary digit and a carry in) which requires population inversions only and the Deutsch-Josza algorithm which requires a control of the phases. Under typical experimental conditions, our simulations show that high fidelity logical operations involving several qubits can be performed in a time scale of a few hundred of microseconds, opening promising perspectives for the manipulation of a large number of qubits in these systems

    Towards Laser Control of Open Quantum Systems: Memory Effects

    Full text link
    Laser control of Open Quantum Systems (OQS) is a challenging issue as compared to its counterpart in isolated small size molecules, basically due to very large numbers of degrees of freedom to be accounted for. Such a control aims at appropriately optimizing decoherence processes of a central two-level system (a given vibrational mode, for instance) towards its environmental bath (including, for instance, all other normal modes). A variety of applications could potentially be envisioned, either to preserve the central system from decaying (long duration molecular alignment or orientation, qubit decoherence protection) or, to speed up the information flow towards the bath (efficient charge or proton transfers in long chain organic compounds). Achieving such controls require some quantitative measures of decoherence in relation with memory effects in the bath response, actually given by the degree of non-Markovianity. Characteristic decoherence rates of a Spin-Boson model are calculated using a Nakajima-Zwanzig type master equation with converged HEOM expansion for the memory kernel. It is shown that, by adequately tuning the two-level transition frequency through a controlled Stark shift produced by an external laser field, non-Markovianity can be enhanced in a continuous way leading to a first attempt towards the control of OQS

    Simulation of the elementary evolution operator with the motional states of an ion in an anharmonic trap

    Full text link
    Following a recent proposal of L. Wang and D. Babikov, J. Chem. Phys. 137, 064301 (2012), we theoretically illustrate the possibility of using the motional states of a Cd+Cd^+ ion trapped in a slightly anharmonic potential to simulate the single-particle time-dependent Schr\"odinger equation. The simulated wave packet is discretized on a spatial grid and the grid points are mapped on the ion motional states which define the qubit network. The localization probability at each grid point is obtained from the population in the corresponding motional state. The quantum gate is the elementary evolution operator corresponding to the time-dependent Schr\"odinger equation of the simulated system. The corresponding matrix can be estimated by any numerical algorithm. The radio-frequency field able to drive this unitary transformation among the qubit states of the ion is obtained by multi-target optimal control theory. The ion is assumed to be cooled in the ground motional state and the preliminary step consists in initializing the qubits with the amplitudes of the initial simulated wave packet. The time evolution of the localization probability at the grids points is then obtained by successive applications of the gate and reading out the motional state population. The gate field is always identical for a given simulated potential, only the field preparing the initial wave packet has to be optimized for different simulations. We check the stability of the simulation against decoherence due to fluctuating electric fields in the trap electrodes by applying dissipative Lindblad dynamics.Comment: 31 pages, 8 figures. Revised version. New title, new figure and new reference

    Control of molecular dynamics with zero-area fields: Application to molecular orientation and photofragmentation

    Full text link
    The constraint of time-integrated zero-area on the laser field is a fundamental, both theoretical and experimental requirement in the control of molecular dynamics. By using techniques of local and optimal control theory, we show how to enforce this constraint on two benchmark control problems, namely molecular orientation and photofragmentation. The origin and the physical implications on the dynamics of this zero-area control field are discussed.Comment: 19 pages, 7 figure

    Ab initio calculation of H + He+^+ charge transfer cross sections for plasma physics

    Full text link
    The charge transfer in low energy (0.25 to 150 eV/amu) H(nlnl) + He+(1s)^+(1s) collisions is investigated using a quasi-molecular approach for the n=2,3n=2,3 as well as the first two n=4n=4 singlet states. The diabatic potential energy curves of the HeH+^+ molecular ion are obtained from the adiabatic potential energy curves and the non-adiabatic radial coupling matrix elements using a two-by-two diabatization method, and a time-dependent wave-packet approach is used to calculate the state-to-state cross sections. We find a strong dependence of the charge transfer cross section in the principal and orbital quantum numbers nn and ll of the initial or final state. We estimate the effect of the non-adiabatic rotational couplings, which is found to be important even at energies below 1 eV/amu. However, the effect is small on the total cross sections at energies below 10 eV/amu. We observe that to calculate charge transfer cross sections in a nn manifold, it is only necessary to include states with nnn^{\prime}\leq n, and we discuss the limitations of our approach as the number of states increases.Comment: 14 pages, 10 figure

    Observation of resonance trapping in an open microwave cavity

    Full text link
    The coupling of a quantum mechanical system to open decay channels has been theoretically studied in numerous works, mainly in the context of nuclear physics but also in atomic, molecular and mesoscopic physics. Theory predicts that with increasing coupling strength to the channels the resonance widths of all states should first increase but finally decrease again for most of the states. In this letter, the first direct experimental verification of this effect, known as resonance trapping, is presented. In the experiment a microwave Sinai cavity with an attached waveguide with variable slit width was used.Comment: to be published in Phys. Rev. Let

    Re-exploring Control Strategies in a Non-Markovian Open Quantum System by Reinforcement Learning

    Full text link
    In this study, we reexamine a recent optimal control simulation targeting the preparation of a superposition of two excited electronic states in the UV range in a complex molecular system. We revisit this control from the perspective of reinforcement learning, offering an efficient alternative to conventional quantum control methods. The two excited states are addressable by orthogonal polarizations and their superposition corresponds to a right or left localization of the electronic density. The pulse duration spans tens of femtoseconds to prevent excitation of higher excited bright states what leads to a strong perturbation by the nuclear motions. We modify an open source software by L. Giannelli et al., Phys. Lett. A, 434, 128054 (2022) that implements reinforcement learning with Lindblad dynamics, to introduce non-Markovianity of the surrounding either by timedependent rates or more exactly by using the hierarchical equations of motion with the QuTiP-BoFiN package. This extension opens the way to wider applications for non-Markovian environments, in particular when the active system interacts with a highly structured noise.Comment: 18 pages, 11 figure
    corecore