5 research outputs found

    Antisymmetric exchange in La-substituted BiFe0.5Sc0.5O3 system: symmetry adapted distortion modes approach

    Get PDF
    Neutron powder diffraction measurements on the 35 % La-substituted Bi1-xLaxFe0.5Sc0.5O3-composition revealed that the samples obtained under high-pressure (6 GPa) and high-temperature (1500 K) conditions crystalize into a distorted perovskite structure with the orthorhombic Pnma symmetry and the unit cell para-meters: a(0) = 5.6745(2) angstrom, b(0) = 7.9834(3) angstrom and c(0) = 5.6310(2) angstrom. A long-range magnetic ordering takes place below 220 K and implies a G-type magnetic structure with the moments 4.10(4)mu(B) per Fe aligned predominately along the orthorhombic c-axis. The space group representation theory using the orthorhombic symmetry yields four bi-linear coupling schemes for the magnetic order parameters imposed by antisymmetric exchange interactions. The couplings are analysed based on symmetry adapted distortion modes defined in respect of the undistorted cubic perovskite structure. The approach allows a quantitative estimation of the coupling strength. It is shown that the experimentally found spin configuration combines the magnetic order parameters coupled by the atomic displacement modes with the largest amplitudes. The results indicate that the antisymmetric exchange is the dominant anisotropic term which fully controls the direction of the Fe3+ spins in the distorted perovskite lattice

    Magnetic phenomena in co-containing layered double hydroxides

    Get PDF
    Magnetic behavior of CoII(n)AlIII layered double hydroxides (LDHs) (n=Co/Al=2 and 3) intercalated with nitrate was studied as a function of temperature. Both LDH compounds are paramagnetic above about 8K. A rapid increase of their magnetic moments occurs below this temperature until the moments reach the maximum values at Tmax of 4.0K and 3.2K for Co(2)Al-NO3 and Co(3)Al-NO3, respectively. Below Tmax, the zero-field-cooled and the field-cooled static magnetization curves are strongly different. Along with this low-temperature phenomena, Co(2)Al-NO3 and Co(3)Al-NO3 demonstrate anomalous behavior of their temperature dependence magnetic susceptibility in a highertemperature range: between 75 and 175K, both the paramagnetic Curie temperature and the effective magnetic moment change in a non-monotonous way. Possible structural reasons of the observed magnetic behavior of the CoII(n)AlIII LDHs are discussed.publishe
    corecore