2 research outputs found

    Spasticity assessment in cerebral palsy

    No full text
    Spasticity is an important, but not the only, component contributing to the increased joint resistance experienced by children with spastic cerebral palsy. Conventional clinical spasticity scales, based on physical examination of the passive muscle, are easy to apply in pediatric populations. Unfortunately, these have low reliability and are unable to differentiate between the different components of joint hyper-resistance. To correctly differentiate spasticity from other neural and non-neural contributions, instrumented assessments that integrate electrophysiological and biomechanical measures are required. In the last 15 years, great advancements in clinically applicable, instrumented assessments were made. However, the translation from research to clinical setting is lagging behind. Simple, yet accurate, instrumented assessments are expected to greatly advance clinical practice in terms of treatment planning based on etiological classification and subsequent outcome evaluation. In addition, the transfer of the research findings to functional outcome would require to extend our research agenda to include assessments of hyperreflexia in the active muscle. Altogether these instrumented methods are not only needed to classify different aspects of joint hyper-resistance but will also provide further insight into its pathophysiology enabling the development of future treatment options for children with spastic cerebral palsy.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Biomechatronics & Human-Machine Contro

    Applying Stretch to Evoke Hyperreflexia in Spasticity Testing: Velocity vs. Acceleration

    No full text
    In neurological diseases, muscles often become hyper-resistant to stretch due to hyperreflexia, an exaggerated stretch reflex response that is considered to primarily depend on the muscle's stretch velocity. However, there is still limited understanding of how different biomechanical triggers applied during clinical tests evoke these reflex responses. We examined the effect of imposing a rotation with increasing velocity vs. increasing acceleration on triceps surae muscle repsonse in children with spastic paresis (SP) and compared the responses to those measured in typically developing (TD) children. A motor-operated ankle manipulator was used to apply different bell-shaped movement profiles, with three levels of maximum velocity (70, 110, and 150°/s) and three levels of maximum acceleration (500, 750, and 1,000°/s2). For each profile and both groups, we evaluated the amount of evoked triceps surae muscle activation. In SP, we evaluated two additional characteristics: the intensity of the response (peak EMG burst) and the time from movement initiation to onset of the EMG burst. As expected, the amount of evoked muscle activation was larger in SP compared to TD (all muscles: p < 0.001) and only sensitive to biomechanical triggers in SP. Further investigation of the responses in SP showed that peak EMG bursts increased in profiles with higher peak velocity (lateral gastrocnemius: p = 0.04), which was emphasized by fair correlations with increased velocity at EMG burst onset (all muscles: r > 0.33–0.36, p ≤ 0.008), but showed no significant effect for acceleration. However, the EMG burst was evoked faster with higher peak acceleration (all muscles p < 0.001) whereas it was delayed in profiles with higher peak velocity (medial gastrocnemius and soleus: p < 0.006). We conclude that while exaggerated response intensity (peak EMG burst) seems linked to stretch velocity, higher accelerations seem to evoke faster responses (time to EMG burst onset) in triceps surae muscles in SP. Understanding and controlling for the distinct effects of different biological triggers, including velocity, acceleration but also length and force of the applied movement, will contribute to the development of more precise clinical measurement tools. This is especially important when aiming to understand the role of hyperreflexia during functional movements where the biomechanical inputs are multiple and changing.Biomechatronics & Human-Machine Contro
    corecore