4,593 research outputs found

    Pycobra: A Python Toolbox for Ensemble Learning and Visualisation

    Get PDF
    We introduce \texttt{pycobra}, a Python library devoted to ensemble learning (regression and classification) and visualisation. Its main assets are the implementation of several ensemble learning algorithms, a flexible and generic interface to compare and blend any existing machine learning algorithm available in Python libraries (as long as a \texttt{predict} method is given), and visualisation tools such as Voronoi tessellations. \texttt{pycobra} is fully \texttt{scikit-learn} compatible and is released under the MIT open-source license. \texttt{pycobra} can be downloaded from the Python Package Index (PyPi) and Machine Learning Open Source Software (MLOSS). The current version (along with Jupyter notebooks, extensive documentation, and continuous integration tests) is available at \href{https://github.com/bhargavvader/pycobra}{https://github.com/bhargavvader/pycobra} and official documentation website is \href{https://modal.lille.inria.fr/pycobra}{https://modal.lille.inria.fr/pycobra}

    GP-Unet: Lesion Detection from Weak Labels with a 3D Regression Network

    Full text link
    We propose a novel convolutional neural network for lesion detection from weak labels. Only a single, global label per image - the lesion count - is needed for training. We train a regression network with a fully convolutional architecture combined with a global pooling layer to aggregate the 3D output into a scalar indicating the lesion count. When testing on unseen images, we first run the network to estimate the number of lesions. Then we remove the global pooling layer to compute localization maps of the size of the input image. We evaluate the proposed network on the detection of enlarged perivascular spaces in the basal ganglia in MRI. Our method achieves a sensitivity of 62% with on average 1.5 false positives per image. Compared with four other approaches based on intensity thresholding, saliency and class maps, our method has a 20% higher sensitivity.Comment: Article published in MICCAI 2017. We corrected a few errors from the first version: padding, loss, typos and update of the DOI numbe

    Hybrid Cooling Systems for Low-Temperature Geothermal Power Production

    Full text link
    The overall objective of this investigation is to identify and evaluate methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions using minimal amounts of water. Geothermal power plants that use air-cooled heat rejection systems experience a decrease in power production during hot periods of the day. This decrease in power output typically coincides with the time when utilities need power to address high air conditioning loads. Hybrid cooling options, which use both air and water, have been studied for this report to assess how they might mitigate the net power decrease

    Extracting the Groupwise Core Structural Connectivity Network: Bridging Statistical and Graph-Theoretical Approaches

    Get PDF
    Finding the common structural brain connectivity network for a given population is an open problem, crucial for current neuro-science. Recent evidence suggests there's a tightly connected network shared between humans. Obtaining this network will, among many advantages , allow us to focus cognitive and clinical analyses on common connections, thus increasing their statistical power. In turn, knowledge about the common network will facilitate novel analyses to understand the structure-function relationship in the brain. In this work, we present a new algorithm for computing the core structural connectivity network of a subject sample combining graph theory and statistics. Our algorithm works in accordance with novel evidence on brain topology. We analyze the problem theoretically and prove its complexity. Using 309 subjects, we show its advantages when used as a feature selection for connectivity analysis on populations, outperforming the current approaches

    Spectral Graph Convolutions for Population-based Disease Prediction

    Get PDF
    Exploiting the wealth of imaging and non-imaging information for disease prediction tasks requires models capable of representing, at the same time, individual features as well as data associations between subjects from potentially large populations. Graphs provide a natural framework for such tasks, yet previous graph-based approaches focus on pairwise similarities without modelling the subjects' individual characteristics and features. On the other hand, relying solely on subject-specific imaging feature vectors fails to model the interaction and similarity between subjects, which can reduce performance. In this paper, we introduce the novel concept of Graph Convolutional Networks (GCN) for brain analysis in populations, combining imaging and non-imaging data. We represent populations as a sparse graph where its vertices are associated with image-based feature vectors and the edges encode phenotypic information. This structure was used to train a GCN model on partially labelled graphs, aiming to infer the classes of unlabelled nodes from the node features and pairwise associations between subjects. We demonstrate the potential of the method on the challenging ADNI and ABIDE databases, as a proof of concept of the benefit from integrating contextual information in classification tasks. This has a clear impact on the quality of the predictions, leading to 69.5% accuracy for ABIDE (outperforming the current state of the art of 66.8%) and 77% for ADNI for prediction of MCI conversion, significantly outperforming standard linear classifiers where only individual features are considered.Comment: International Conference on Medical Image Computing and Computer-Assisted Interventions (MICCAI) 201

    Distance Metric Learning using Graph Convolutional Networks: Application to Functional Brain Networks

    Full text link
    Evaluating similarity between graphs is of major importance in several computer vision and pattern recognition problems, where graph representations are often used to model objects or interactions between elements. The choice of a distance or similarity metric is, however, not trivial and can be highly dependent on the application at hand. In this work, we propose a novel metric learning method to evaluate distance between graphs that leverages the power of convolutional neural networks, while exploiting concepts from spectral graph theory to allow these operations on irregular graphs. We demonstrate the potential of our method in the field of connectomics, where neuronal pathways or functional connections between brain regions are commonly modelled as graphs. In this problem, the definition of an appropriate graph similarity function is critical to unveil patterns of disruptions associated with certain brain disorders. Experimental results on the ABIDE dataset show that our method can learn a graph similarity metric tailored for a clinical application, improving the performance of a simple k-nn classifier by 11.9% compared to a traditional distance metric.Comment: International Conference on Medical Image Computing and Computer-Assisted Interventions (MICCAI) 201
    corecore