4,593 research outputs found
Pycobra: A Python Toolbox for Ensemble Learning and Visualisation
We introduce \texttt{pycobra}, a Python library devoted to ensemble learning
(regression and classification) and visualisation. Its main assets are the
implementation of several ensemble learning algorithms, a flexible and generic
interface to compare and blend any existing machine learning algorithm
available in Python libraries (as long as a \texttt{predict} method is given),
and visualisation tools such as Voronoi tessellations. \texttt{pycobra} is
fully \texttt{scikit-learn} compatible and is released under the MIT
open-source license. \texttt{pycobra} can be downloaded from the Python Package
Index (PyPi) and Machine Learning Open Source Software (MLOSS). The current
version (along with Jupyter notebooks, extensive documentation, and continuous
integration tests) is available at
\href{https://github.com/bhargavvader/pycobra}{https://github.com/bhargavvader/pycobra}
and official documentation website is
\href{https://modal.lille.inria.fr/pycobra}{https://modal.lille.inria.fr/pycobra}
GP-Unet: Lesion Detection from Weak Labels with a 3D Regression Network
We propose a novel convolutional neural network for lesion detection from
weak labels. Only a single, global label per image - the lesion count - is
needed for training. We train a regression network with a fully convolutional
architecture combined with a global pooling layer to aggregate the 3D output
into a scalar indicating the lesion count. When testing on unseen images, we
first run the network to estimate the number of lesions. Then we remove the
global pooling layer to compute localization maps of the size of the input
image. We evaluate the proposed network on the detection of enlarged
perivascular spaces in the basal ganglia in MRI. Our method achieves a
sensitivity of 62% with on average 1.5 false positives per image. Compared with
four other approaches based on intensity thresholding, saliency and class maps,
our method has a 20% higher sensitivity.Comment: Article published in MICCAI 2017. We corrected a few errors from the
first version: padding, loss, typos and update of the DOI numbe
Hybrid Cooling Systems for Low-Temperature Geothermal Power Production
The overall objective of this investigation is to identify and evaluate methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions using minimal amounts of water.
Geothermal power plants that use air-cooled heat rejection systems experience a decrease in power production during hot periods of the day. This decrease in power output typically coincides with the time when utilities need power to address high air conditioning loads. Hybrid cooling options, which use both air and water, have been studied for this report to assess how they might mitigate the net power decrease
Extracting the Groupwise Core Structural Connectivity Network: Bridging Statistical and Graph-Theoretical Approaches
Finding the common structural brain connectivity network for a given
population is an open problem, crucial for current neuro-science. Recent
evidence suggests there's a tightly connected network shared between humans.
Obtaining this network will, among many advantages , allow us to focus
cognitive and clinical analyses on common connections, thus increasing their
statistical power. In turn, knowledge about the common network will facilitate
novel analyses to understand the structure-function relationship in the brain.
In this work, we present a new algorithm for computing the core structural
connectivity network of a subject sample combining graph theory and statistics.
Our algorithm works in accordance with novel evidence on brain topology. We
analyze the problem theoretically and prove its complexity. Using 309 subjects,
we show its advantages when used as a feature selection for connectivity
analysis on populations, outperforming the current approaches
Spectral Graph Convolutions for Population-based Disease Prediction
Exploiting the wealth of imaging and non-imaging information for disease
prediction tasks requires models capable of representing, at the same time,
individual features as well as data associations between subjects from
potentially large populations. Graphs provide a natural framework for such
tasks, yet previous graph-based approaches focus on pairwise similarities
without modelling the subjects' individual characteristics and features. On the
other hand, relying solely on subject-specific imaging feature vectors fails to
model the interaction and similarity between subjects, which can reduce
performance. In this paper, we introduce the novel concept of Graph
Convolutional Networks (GCN) for brain analysis in populations, combining
imaging and non-imaging data. We represent populations as a sparse graph where
its vertices are associated with image-based feature vectors and the edges
encode phenotypic information. This structure was used to train a GCN model on
partially labelled graphs, aiming to infer the classes of unlabelled nodes from
the node features and pairwise associations between subjects. We demonstrate
the potential of the method on the challenging ADNI and ABIDE databases, as a
proof of concept of the benefit from integrating contextual information in
classification tasks. This has a clear impact on the quality of the
predictions, leading to 69.5% accuracy for ABIDE (outperforming the current
state of the art of 66.8%) and 77% for ADNI for prediction of MCI conversion,
significantly outperforming standard linear classifiers where only individual
features are considered.Comment: International Conference on Medical Image Computing and
Computer-Assisted Interventions (MICCAI) 201
Distance Metric Learning using Graph Convolutional Networks: Application to Functional Brain Networks
Evaluating similarity between graphs is of major importance in several
computer vision and pattern recognition problems, where graph representations
are often used to model objects or interactions between elements. The choice of
a distance or similarity metric is, however, not trivial and can be highly
dependent on the application at hand. In this work, we propose a novel metric
learning method to evaluate distance between graphs that leverages the power of
convolutional neural networks, while exploiting concepts from spectral graph
theory to allow these operations on irregular graphs. We demonstrate the
potential of our method in the field of connectomics, where neuronal pathways
or functional connections between brain regions are commonly modelled as
graphs. In this problem, the definition of an appropriate graph similarity
function is critical to unveil patterns of disruptions associated with certain
brain disorders. Experimental results on the ABIDE dataset show that our method
can learn a graph similarity metric tailored for a clinical application,
improving the performance of a simple k-nn classifier by 11.9% compared to a
traditional distance metric.Comment: International Conference on Medical Image Computing and
Computer-Assisted Interventions (MICCAI) 201
- …
