45 research outputs found

    Unbounded sequence of observers exhibiting Einstein-Podolsky-Rosen steering

    Full text link
    A sequential steering scenario is investigated, where multiple Bobs aim at demonstrating steering using successively the same half of an entangled quantum state. With isotropic entangled states of local dimension dd, the number of Bobs that can steer Alice is found to be NBobd/logdN_\mathrm{Bob}\sim d/\log{d}, thus leading to an arbitrary large number of successive instances of steering with independently chosen and unbiased inputs. This scaling is achieved when considering a general class of measurements along orthonormal bases, as well as complete sets of mutually unbiased bases. Finally, we show that similar results can be obtained in an anonymous sequential scenario, where none of the Bobs know their position in the sequence.Comment: 7 pages, 4 figure

    Symmetric multipartite Bell inequalities via Frank-Wolfe algorithms

    Full text link
    In multipartite Bell scenarios, we study the nonlocality robustness of the Greenberger-Horne-Zeilinger (GHZ) state. When each party performs planar measurements forming a regular polygon, we exploit the symmetry of the resulting correlation tensor to drastically accelerate the computation of (i) a Bell inequality via Frank-Wolfe algorithms, and (ii) the corresponding local bound. The Bell inequalities obtained are facets of the symmetrised local polytope and they give the best known upper bounds on the nonlocality robustness of the GHZ state for three to ten parties. Moreover, for four measurements per party, we generalise our facets and hence show, for any number of parties, an improvement on Mermin's inequality in terms of noise robustness. We also compute the detection efficiency of our inequalities and show that some give rise to activation of nonlocality in star networks, a property that was only shown with an infinite number of measurements.Comment: 12 pages, 2 figure

    Quantifying photonic high-dimensional entanglement

    Full text link
    High-dimensional entanglement offers promising perspectives in quantum information science. In practice, however, the main challenge is to devise efficient methods to characterize high-dimensional entanglement, based on the available experimental data which is usually rather limited. Here we report the characterization and certification of high-dimensional entanglement in photon pairs, encoded in temporal modes. Building upon recently developed theoretical methods, we certify an entanglement of formation of 2.09(7) ebits in a time-bin implementation, and 4.1(1) ebits in an energy-time implementation. These results are based on very limited sets of local measurements, which illustrates the practical relevance of these methods.Comment: 5 pages, 3 figure

    Algorithmic construction of local models for entangled quantum states: optimization for two-qubit states

    Full text link
    The correlations of certain entangled quantum states can be fully reproduced via a local model. We discuss in detail the practical implementation of an algorithm for constructing local models for entangled states, recently introduced by Hirsch et al. [Phys. Rev. Lett. 117, 190402 (2016)] and Cavalcanti et al. [Phys. Rev. Lett. 117, 190401 (2016)]. The method allows one to construct both local hidden state (LHS) and local hidden variable (LHV) models, and can be applied to arbitrary entangled states in principle. Here we develop an improved implementation of the algorithm, discussing the optimization of the free parameters. For the case of two-qubit states, we design a ready-to-use optimized procedure. This allows us to construct LHS models (for projective measurements) that are almost optimal, as we show for Bell diagonal states, for which the optimal model has recently been derived. Finally, we show how to construct fully analytical local models, based on the output of the convex optimization procedure.Comment: 15 pages, 5 figure

    Improved local models and new Bell inequalities via Frank-Wolfe algorithms

    Full text link
    In Bell scenarios with two outcomes per party, we algorithmically consider the two sides of the membership problem for the local polytope: constructing local models and deriving separating hyperplanes, that is, Bell inequalities. We take advantage of the recent developments in so-called Frank-Wolfe algorithms to significantly increase the convergence rate of existing methods. As an application, we study the threshold value for the nonlocality of two-qubit Werner states under projective measurements. Here, we improve on both the upper and lower bounds present in the literature. Importantly, our bounds are entirely analytical; moreover, they yield refined bounds on the value of the Grothendieck constant of order three: 1.4367KG(3)1.45461.4367\leqslant K_G(3)\leqslant1.4546. We also demonstrate the efficiency of our approach in multipartite Bell scenarios, and present the first local models for all projective measurements with visibilities noticeably higher than the entanglement threshold. We make our entire code accessible as a Julia library called BellPolytopes.jl.Comment: 16 pages, 3 figure

    Experimental relativistic zero-knowledge proofs

    Get PDF
    Protecting secrets is a key challenge in our contemporary information-based era. In common situations, however, revealing secrets appears unavoidable, for instance, when identifying oneself in a bank to retrieve money. In turn, this may have highly undesirable consequences in the unlikely, yet not unrealistic, case where the bank's security gets compromised. This naturally raises the question of whether disclosing secrets is fundamentally necessary for identifying oneself, or more generally for proving a statement to be correct. Developments in computer science provide an elegant solution via the concept of zero-knowledge proofs: a prover can convince a verifier of the validity of a certain statement without facilitating the elaboration of a proof at all. In this work, we report the experimental realisation of such a zero-knowledge protocol involving two separated verifier-prover pairs. Security is enforced via the physical principle of special relativity, and no computational assumption (such as the existence of one-way functions) is required. Our implementation exclusively relies on off-the-shelf equipment and works at both short (60 m) and long distances (400 m) in about one second. This demonstrates the practical potential of multi-prover zero-knowledge protocols, promising for identification tasks and blockchain-based applications such as cryptocurrencies or smart contracts.Comment: 8 pages, 3 figure

    Quantum entanglement in the triangle network

    Full text link
    Beyond future applications, quantum networks open interesting fundamental perspectives, notably novel forms of quantum correlations. In this work we discuss quantum correlations in networks from the perspective of the underlying quantum states and their entanglement. We address the questions of which states can be prepared in the so-called triangle network, consisting of three nodes connected pairwise by three sources. We derive necessary criteria for a state to be preparable in such a network, considering both the cases where the sources are statistically independent and classically correlated. This shows that the network structure imposes strong and non-trivial constraints on the set of preparable states, fundamentally different from the standard characterization of multipartite quantum entanglement.Comment: 7 pages, 1 figure, see related work from Navascues et al.: arXiv:2002.02773, comments are welcome

    Quantum measurement incompatibility in subspaces

    Full text link
    We consider the question of characterising the incompatibility of sets of high-dimensional quantum measurements. We introduce the concept of measurement incompatibility in subspaces. That is, starting from a set of measurements that is incompatible, one considers the set of measurements obtained by projection onto any strict subspace of fixed dimension. We identify three possible forms of incompatibility in subspaces: (i) incompressible incompatibility: measurements that become compatible in every subspace, (ii) fully compressible incompatibility: measurements that remain incompatible in every subspace, and (iii) partly compressible incompatibility: measurements that are compatible in some subspace and incompatible in another. For each class we discuss explicit examples. Finally, we present some applications of these ideas. First we show that joint measurability and coexistence are two inequivalent notions of incompatibility in the simplest case of qubit systems. Second we highlight the implications of our results for tests of quantum steering.Comment: 12 pages, no figures, comments are welcome! v2: published versio

    Quantum measurement incompatibility in subspaces

    Get PDF
    We consider the question of characterizing the incompatibility of sets of high-dimensional quantum measurements. We introduce the concept of measurement incompatibility in subspaces. That is, starting from a set of measurements that is incompatible, one considers the set of measurements obtained by projection onto any strict subspace of fixed dimension. We identify three possible forms of incompatibility in subspaces: (i) incompressible incompatibility-measurements that become compatible in every subspace, (ii) fully compressible incompatibility-measurements that remain incompatible in every subspace, and (iii) partly compressible incompatibility-measurements that are compatible in some subspace and incompatible in another. For each class, we discuss explicit examples. Finally, we present some applications of these ideas. First, we show that joint measurability and coexistence are two inequivalent notions of incompatibility in the simplest case of qubit systems. Second, we highlight the implications of our results for tests of quantum steering
    corecore