146 research outputs found

    Effects of school-based interventions on mental health stigmatization: a systematic review

    Get PDF
    Stigmatizing, or discriminatory, perspectives and behaviour, which target individuals on the basis of their mental health, are observed in even the youngest school children. We conducted a systematic review of the published and unpublished, scientific literature concerning the benefits and harms of school-based interventions, which were directed at students 18 years of age or younger to prevent or eliminate such stigmatization. Forty relevant studies were identified, yet only a qualitative synthesis was deemed appropriate. Five limitations within the evidence base constituted barriers to drawing conclusive inferences about the effectiveness and harms of school-based interventions: poor reporting quality, a dearth of randomized controlled trial evidence, poor methods quality for all research designs, considerable clinical heterogeneity, and inconsistent or null results. Nevertheless, certain suggestive evidence derived both from within and beyond our evidence base has allowed us to recommend the development, implementation and evaluation of a curriculum, which fosters the development of empathy and, in turn, an orientation toward social inclusion and inclusiveness. These effects may be achieved largely by bringing especially but not exclusively the youngest children into direct, structured contact with an infant, and likely only the oldest children and youth into direct contact with individuals experiencing mental health difficulties. The possible value of using educational activities, materials and contents to enhance hypothesized benefits accruing to direct contact also requires investigation. Overall, the curriculum might serve as primary prevention for some students and as secondary prevention for others

    Immunologic, reproductive, and carcinogenic risk assessment from POP exposure in East Greenland polar bears (Ursus maritimus) during 1983–2013

    No full text
    Polar bears (Ursus maritimus) are among the world's highest trophic level marine predators and as such have some of the highest tissue concentrations of organohalogen contaminants (OHCs) among Arctic biota. In this paper we present the results of a three decade (1983–2013) risk assessment of OHC exposure and effects on reproduction, immunity, and cancer (genotoxicity) in polar bears from Central East Greenland. Risk of adverse effects are evaluated using a risk quotient (RQ) approach with derivation from measured OHC concentrations in polar bear tissue and critical body residues (CBR) extrapolated for polar bears using physiologically-based pharmacokinetic modelling (PBPK). The additive RQs for all OHCs in polar bears were above the threshold for all effect categories (RQ > 1) in every year, suggesting this population has been at significant and continuous risk of contaminant-mediated effects for over three decades. RQs peaked in 1983 (RQ > 58) and again in 2013 (RQ > 50) after a period of decline. These trends follow ΣPCB levels during that time, and contributed almost all of the risk to immune, reproductive, and carcinogenic effects (71–99% of total RQ). The recent spike in RQs suggests a major shift in polar bear contaminant exposure from climate related changes in food composition and hereby the increased risk of adverse health effects. In the context of lifetime exposure ΣPCB and PFOS levels showed the interactive importance of year of birth, age, and emissio

    Dissolved Organic Carbon Thresholds Affect Mercury Bioaccumulation in Arctic Lakes

    No full text
    Dissolved organic carbon (DOC) is known to affect the Hg cycle in aquatic environments due to its overriding influence on complexation, photochemical, and microbial processes, but its role as a mediating factor in the bioaccumulation of Hg in aquatic biota has remained enigmatic. Here, we examined 26 tundra lakes in Canada’s western Arctic that span a large gradient of DOC concentrations to show that total Hg (Hg<sub>T</sub>) and methyl mercury (MeHg) accumulation by aquatic invertebrates is defined by a threshold response to Hg-DOC binding. Our results showed that DOC promotes Hg<sub>T</sub> and MeHg bioaccumulation in tundra lakes having low DOC (<8.6 – 8.8 mg C L<sup>–1</sup>; DOC threshold concentration, <i>T</i><sub>C</sub>) whereas DOC inhibits Hg<sub>T</sub> and MeHg bioaccumulation in lakes having high DOC (>DOC <i>T</i><sub>C</sub>), consistent with bioaccumulation results in a companion paper (this issue) using a microbial bioreporter. Chemical equilibrium modeling showed that Hg bioaccumulation factors were elevated when Hg was associated mainly to fulvic acids, but became dramatically reduced when DOC was >8.5 mg C L<sup>–1</sup>, at which point Hg was associated primarily with strong binding sites on larger, less bioaccessible humic acids. This study demonstrates that the biological uptake of Hg in lakes is determined by binding thresholds on DOC, a water quality variable predicted to change markedly with future environmental change
    • …
    corecore