40 research outputs found

    Cleavage of a Neuroinvasive Human Respiratory Virus Spike Glycoprotein by Proprotein Convertases Modulates Neurovirulence and Virus Spread within the Central Nervous System.

    Get PDF
    International audienceHuman coronaviruses (HCoV) are respiratory pathogens that may be associated with the development of neurological diseases, in view of their neuroinvasive and neurotropic properties. The viral spike (S) glycoprotein is a major virulence factor for several coronavirus species, including the OC43 strain of HCoV (HCoV-OC43). In an attempt to study the role of this protein in virus spread within the central nervous system (CNS) and neurovirulence, as well as to identify amino acid residues important for such functions, we compared the sequence of the S gene found in the laboratory reference strain HCoV-OC43 ATCC VR-759 to S sequences of viruses detected in clinical isolates from the human respiratory tract. We identified one predominant mutation at amino acid 758 (from RRSR↓ G758 to RRSR↓R758), which introduces a putative furin-like cleavage (↓) site. Using a molecular cDNA infectious clone to generate a corresponding recombinant virus, we show for the first time that such point mutation in the HCoV-OC43 S glycoprotein creates a functional cleavage site between the S1 and S2 portions of the S protein. While the corresponding recombinant virus retained its neuroinvasive properties, this mutation led to decreased neurovirulence while potentially modifying the mode of virus spread, likely leading to a limited dissemination within the CNS. Taken together, these results are consistent with the adaptation of HCoV-OC43 to the CNS environment, resulting from the selection of quasi-species harboring mutations that lead to amino acid changes in viral genes, like the S gene in HCoV-OC43, which may contribute to a more efficient establishment of a less pathogenic but persistent CNS infection. This adaptative mechanism could potentially be associated with human encephalitis or other neurological degenerative pathologies

    The acetyl-esterase activity of the hemagglutinin-esterase protein of human coronavirus OC43 strongly enhances the production of infectious virus.

    No full text
    International audienceMost betacoronaviruses possess an hemagglutinin-esterase (HE) protein, which appears to play a role in binding to or release from the target cell. Since this HE protein possesses an acetyl-esterase activity that removes acetyl groups from O-acetylated sialic acid, a role as a receptor-destroying enzyme has been postulated. However, the precise function of HE and of its enzymatic activity remains poorly understood. Making use of neutralizing antibody and of molecular clones of recombinant human coronavirus OC43 (HCoV-OC43), our results suggest that the HE protein of this HCoV could be associated with infection of target cells and, most notably, is important in the production of infectious viral particles. Indeed, after transfecting BHK-21 cells with various cDNA infectious clones of HCoV-OC43, either lacking the HE protein or bearing an HE protein with a nonfunctional acetyl-esterase enzymatic activity, we were reproducibly unable to detect recombinant infectious viruses compared to the reference infectious HCoV-OC43 clone pBAC-OC43(FL). Complementation experiments, using BHK-21 cells expressing wild-type HE, either transiently or in a stable ectopic expression, demonstrate that this protein plays a very significant role in the production of infectious recombinant coronaviral particles that can subsequently more efficiently infect susceptible epithelial and neuronal cells. Even though the S protein is the main viral factor influencing coronavirus infection of susceptible cells, our results taken together indicate that a functionally active HE protein enhances the infectious properties of HCoV-OC43 and contributes to efficient virus dissemination in cell culture

    Novel treatment with neuroprotective and antiviral properties against a neuroinvasive human respiratory virus.

    No full text
    International audienceHuman coronaviruses (HCoVs) are recognized respiratory pathogens with neuroinvasive and neurotropic properties in mice and humans. HCoV strain OC43 (HCoV-OC43) can infect and persist in human neural cells and activate neuroinflammatory and neurodegenerative mechanisms, suggesting that it could be involved in neurological disease of unknown etiology in humans. Moreover, we have shown that HCoV-OC43 is neurovirulent in susceptible mice, causing encephalitis, and that a viral mutant with a single point mutation in the viral surface spike (S) protein induces a paralytic disease that involves glutamate excitotoxicity in susceptible mice. Herein, we show that glutamate recycling via the glial transporter 1 protein transporter and glutamine synthetase are central to the dysregulation of glutamate homeostasis and development of motor dysfunctions and paralytic disease in HCoV-OC43-infected mice. Moreover, memantine, an N-methyl-d-aspartate receptor antagonist widely used in the treatment of neurological diseases in humans, improved clinical scores related to paralytic disease and motor disabilities by partially restoring the physiological neurofilament phosphorylation state in virus-infected mice. Interestingly, memantine attenuated mortality rates and body weight loss and reduced HCoV-OC43 replication in the central nervous system in a dose-dependent manner. This novel action of memantine on viral replication strongly suggests that it could be used as an antiviral agent to directly limit viral replication while improving neurological symptoms in various neurological diseases with a viral involvement. Mutations in the surface spike (S) protein of human respiratory coronavirus OC43 appear after persistent infection of human cells of the central nervous system, a possible viral adaptation to this environment. Furthermore, a single amino acid change in the viral S protein modulated virus-induced neuropathology in mice from an encephalitis to a neuropathology characterized by flaccid paralysis, which involves glutamate excitotoxicity. We now show that memantine, a drug that is used for alleviating symptoms associated with neuropathology, such as Alzheimer's disease, can partially restore the physiological state of infected mice by limiting both neurodegeneration and viral replication. This suggests that memantine could be used as an antiviral agent while improving neurological symptoms in various neurological diseases with a viral involvement

    Integrative chemistry toward the first spontaneous generation of gold nanoparticles within macrocellular polyHIPE supports (Au@polyHIPE) and their application to eosin reduction

    No full text
    Gold nanoparticles have been generated for the first time within open-cell macrocellular polyHIPE matrices, leading to new hybrid organic–inorganic catalytic supports labelled “Au@polyHIPE”. The overall synthesis can be realized with ease, as it is based on the spontaneous nucleation of gold nanoparticles. These new hybrid organic–inorganic materials have then been tested for heterogeneous catalysis, particularly for eosin Y reduction in the presence of NaBH4. In this reductive media the as-synthesized hybrid catalytic supports “Au@polyHIPE” exhibit a good activity. All the kinetic parameters are discussed in term of internal surface (porosity), external surface (shape), temperature and gold loading revealing a first order reaction

    The OC43 human coronavirus envelope protein is critical for infectious virus production and propagation in neuronal cells and is a determinant of neurovirulence and CNS pathology

    No full text
    International audienceThe OC43 strain of human coronavirus (HCoV-OC43) is an ubiquitous respiratory tract pathogen possessing neurotropic capacities. Coronavirus structural envelope (E) protein possesses specific motifs involved in protein-protein interaction or in homo-oligomeric ion channel formation, which are known to play various roles including in virion morphology/assembly and in cell response to infection and/or virulence. Making use of recombinant viruses either devoid of the E protein or harboring mutations either in putative transmembrane domain or PDZ-binding motif, we demonstrated that a fully functional HCoV-OC43 E protein is first needed for optimal production of recombinant infectious viruses. Furthermore, HCoV-OC43 infection of human epithelial and neuronal cell lines, of mixed murine primary cultures from the central nervous system and of mouse central nervous system showed that the E protein is critical for efficient and optimal virus replication and propagation, and thereby for neurovirulence

    Axonal Transport Enables Neuron-to-Neuron propagation of HCoV-OC43

    No full text
    International audienceHuman coronaviruses (HCoV) are recognized respiratory pathogens for which accumulating evidence indicates that in vulnerable patients, the infection can cause more severe pathologies. HCoVs are not always confined to the upper respiratory tract and can invade the CNS upon still unclear circumstances. HCoV-induced neuropathologies in human are difficult to diagnose early enough to allow therapeutic interventions. Making use of our already described animal model of HCoV neuropathogenesis, we describe the route of neuropropagation from the nasal cavity to the olfactory bulb, piriform cortex then brainstem. We identified neuron-to-neuron propagation as one underlying mode of virus spreading in cell culture. Our data demonstrate that both passive diffusion of released viral particles and axonal transport are valid propagation strategies used by the virus. We describe for the first time the presence along axons of viral platforms whose static dynamism are reminiscent of viral assembly sites. We further revealed that HCoV-OC43 modes of propagation could be modulated by selected HCoV-OC43 proteins and axonal transport. Our work, therefore, identifies processes that may govern the severity and nature of HCoV-OC43 neuropathogenesis and will make possible the development of therapeutic strategies to prevent occurrences.IMPORTANCE Coronaviruses may invade the CNS, disseminate and participate in the induction of neurological diseases. Their neuropathogenicity is being increasingly recognized in humans, and the presence and persistence of human coronaviruses (HCoV) in human brains was proposed to cause long-term sequelae. Using our mouse model relying on natural susceptibility to HCoV-OC43 and neuronal cell cultures, we have defined the most relevant path taken by HCoV-OC43 to access and spread to and within the CNS toward the brainstem and spinal cord and studied in cell culture the underlying modes of intercellular propagation to better understand its neuropathogenesis. Our data suggest that the axonal transport governs HCoV-OC43 egress in the CNS leading to exacerbate neuropathogenesis. Exploiting knowledge on neuroinvasion and dissemination will enhance our ability to control viral infection within the CNS as it will shed light on underlying mechanisms of neuropathogenesis and uncover potential "druggable" molecular virus-host interfaces
    corecore