22 research outputs found

    The prevalence of middle ear pathogens in the outer ear canal and the nasopharyngeal cavity of healthy young adults

    Get PDF
    AbstractCulturing middle ear fluid samples from children with chronic otitis media with effusion (OME) using standard techniques results in the isolation of bacterial species in approximately 30–50% of the cases. Haemophilus influenzae, Streptococcus pneumoniae and Moraxella catarrhalis, the classic middle ear pathogens of acute otitis media, are involved but, recently, several studies suggested Alloiococcus otitidis as an additional pathogen. In the present study, we used species-specific PCRs to establish the prevalence, in both the nasopharyngeal cavity and the outer ear, of H. influenzae, M. catarrhalis, S. pneumoniae and A. otitidis. The study group consisted of 70 healthy volunteers (aged 19–22 years). The results indicate a high prevalence (>80%) of A. otitidis in the outer ear in contrast to its absence in the nasopharynx. H. influenzae was found in both the outer ear and the nasopharynx (6% and 14%, respectively), whereas S. pneumoniae and M. catarrhalis were found only in the nasopharynx (9% and 34%, respectively). A. otitidis, described as a fastidious organism, were able to be cultured using an optimized culture protocol, with prolonged incubation, which allowed the isolation of A. otitidis in five of the nine PCR-positive samples out of the total of ten samples tested. Given the absence of the outer ear inhabitant A. otitidis from the nasopharynx, its role in the aetiology of OME remains ambiguous because middle ear infecting organisms are considered to invade the middle ear from the nasopharynx through the Eustachian tube

    Clinical application of a rapid microbiological test based on capillary zone electrophoresis to assess local skin infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The basic clinical problem associated with infection treatment is the fact that classic, commonly and routinely used isolation and identification methods are based on long-term processes of a phenotypic analysis of microorganisms. Consequently sometimes, especially in small centres, rapid implementation of antibacterial treatment becomes delayed.</p> <p>The work presents the initial results of rapid microbiological identification based on an original method of capillary zone electrophoresis (CZE). The study involved the analysis of 78 biological samples from post-operative wounds and trophic ulcers.</p> <p>Results</p> <p>The attempt was made to identify individual bacterial species based on characteristic features of electropherograms achieved. Finally, G(+) cocci type bacteria and different G(-) rods were identified with sensitivity of 88.1% and specificity of 100%.</p> <p>Conclusions</p> <p>Based on the clinical trials using an electrophoretic technique in the field of microbiological diagnostics of infected exudate from a post-operative wound it can be concluded that it is a rapid and relatively sensitive method for initial identification of infectious pathogens.</p

    Development and comparison of a real-time PCR assay for detection of Dichelobacter nodosus with culturing and conventional PCR: harmonisation between three laboratories

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ovine footrot is a contagious disease with worldwide occurrence in sheep. The main causative agent is the fastidious bacterium <it>Dichelobacter nodosus</it>. In Scandinavia, footrot was first diagnosed in Sweden in 2004 and later also in Norway and Denmark. Clinical examination of sheep feet is fundamental to diagnosis of footrot, but <it>D. nodosu</it>s should also be detected to confirm the diagnosis. PCR-based detection using conventional PCR has been used at our institutes, but the method was laborious and there was a need for a faster, easier-to-interpret method. The aim of this study was to develop a TaqMan-based real-time PCR assay for detection of <it>D. nodosus </it>and to compare its performance with culturing and conventional PCR.</p> <p>Methods</p> <p>A <it>D. nodosus-</it>specific TaqMan based real-time PCR assay targeting the 16S rRNA gene was designed. The inclusivity and exclusivity (specificity) of the assay was tested using 55 bacterial and two fungal strains. To evaluate the sensitivity and harmonisation of results between different laboratories, aliquots of a single DNA preparation were analysed at three Scandinavian laboratories. The developed real-time PCR assay was compared to culturing by analysing 126 samples, and to a conventional PCR method by analysing 224 samples. A selection of PCR-products was cloned and sequenced in order to verify that they had been identified correctly.</p> <p>Results</p> <p>The developed assay had a detection limit of 3.9 fg of <it>D. nodosus </it>genomic DNA. This result was obtained at all three laboratories and corresponds to approximately three copies of the <it>D. nodosus </it>genome per reaction. The assay showed 100% inclusivity and 100% exclusivity for the strains tested. The real-time PCR assay found 54.8% more positive samples than by culturing and 8% more than conventional PCR.</p> <p>Conclusions</p> <p>The developed real-time PCR assay has good specificity and sensitivity for detection of <it>D. nodosus</it>, and the results are easy to interpret. The method is less time-consuming than either culturing or conventional PCR.</p

    Pseudomonas aeruginosa Population Structure Revisited

    Get PDF
    At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P. aeruginosa “core lineage” and typically exhibited the exoS+/exoU− genotype and group B oprL and oprD alleles. This is to our knowledge the first report of an MST analysis conducted on a polyphasic data set
    corecore