121 research outputs found

    Design and rationale of FINE-REAL: A prospective study of finerenone in clinical practice

    Get PDF
    AIMS: Contemporary patterns of care of patients with chronic kidney disease (CKD) associated with type 2 diabetes (T2D) and the adoption of finerenone are not known. The FINE-REAL study (NCT05348733) is a prospective observational study in patients with CKD and T2D to provide insights into the use of the nonsteroidal mineralocorticoid receptor antagonist (MRA) finerenone in clinical practice. METHODS: FINE-REAL is an international, prospective, multicenter, single-arm study enrolling approximately 5500 adults with CKD and T2D in an estimated 200 sites across 22 countries. The study is anticipated to be ongoing until 2027. RESULTS: The primary objective is to describe treatment patterns in patients with CKD and T2D treated with finerenone in routine clinical practice. Secondary objectives include assessment of safety with finerenone. Other endpoints include characterization of healthcare resource utilization and occurrence of newly diagnosed diabetic retinopathy or its progression from baseline in patients with existing disease. A biobank is being organized for future explorative analyses with inclusion of participants from the United States. CONCLUSIONS: FINE-REAL is the first prospective observational study with a nonsteroidal MRA in a population with CKD and T2D and is expected to provide meaningful insights into the treatment of CKD associated with T2D. FINE-REAL will inform decision-making with respect to initiation of finerenone in patients with CKD and T2D

    National Institutes of Health Career Development Awards for Cardiovascular Physician-Scientists: Recent Trends and Strategies for Success

    Get PDF
    Nurturing the development of cardiovascular physician-scientist investigators is critical for sustained progress in cardiovascular science and improving human health. The transition from an inexperienced trainee to an independent physician-scientist is a multifaceted process requiring a sustained commitment from the trainee, mentors, and institution. A cornerstone of this training process is a career development (K) award from the National Institutes of Health (NIH). These awards generally require 75% of the awardee's professional effort devoted to research aims and diverse career development activities carried out in a mentored environment over a 5-year period. We report on recent success rates for obtaining NIH K awards, provide strategies for preparing a successful application and navigating the early career period for aspiring cardiovascular investigators, and offer cardiovascular division leadership perspectives regarding K awards in the current era. Our objective is to offer practical advice that will equip trainees considering an investigator path for success

    Use of mechanical circulatory support devices among patients with acute myocardial infarction complicated by cardiogenic shock

    Get PDF
    Importance: Mechanical circulatory support (MCS) devices, including intravascular microaxial left ventricular assist devices (LVADs) and intra-aortic balloon pumps (IABPs), are used in patients who undergo percutaneous coronary intervention (PCI) for acute myocardial infarction (AMI) complicated by cardiogenic shock despite limited evidence of their clinical benefit. Objective: To examine trends in the use of MCS devices among patients who underwent PCI for AMI with cardiogenic shock, hospital-level use variation, and factors associated with use. Design, Setting, and Participants: This cross-sectional study used the CathPCI and Chest Pain-MI Registries of the American College of Cardiology National Cardiovascular Data Registry. Patients who underwent PCI for AMI complicated by cardiogenic shock between October 1, 2015, and December 31, 2017, were identified from both registries. Data were analyzed from October 2018 to August 2020. Exposures: Therapies to provide hemodynamic support were categorized as intravascular microaxial LVAD, IABP, TandemHeart, extracorporeal membrane oxygenation, LVAD, other devices, combined IABP and intravascular microaxial LVAD, combined IABP and other device (defined as TandemHeart, extracorporeal membrane oxygenation, LVAD, or another MCS device), or medical therapy only. Main Outcomes and Measures: Use of MCS devices overall and specific MCS devices, including intravascular microaxial LVAD, at both patient and hospital levels and variables associated with use. Results: Among the 28 304 patients included in the study, the mean (SD) age was 65.4 (12.6) years and 18 968 were men (67.0%). The overall MCS device use was constant from the fourth quarter of 2015 to the fourth quarter of 2017, although use of intravascular microaxial LVADs significantly increased (from 4.1% to 9.8%; P \u3c .001), whereas use of IABPs significantly decreased (from 34.8% to 30.0%; P \u3c .001). A significant hospital-level variation in MCS device use was found. The median (interquartile range [IQR]) proportion of patients who received MCS devices was 42% (30%-54%), and the median proportion of patients who received intravascular microaxial LVADs was 1% (0%-10%). In multivariable analyses, cardiac arrest at first medical contact or during hospitalization (odds ratio [OR], 1.82; 95% CI, 1.58-2.09) and severe left main and/or proximal left anterior descending coronary artery stenosis (OR, 1.36; 95% CI, 1.20-1.54) were patient characteristics that were associated with higher odds of receiving intravascular microaxial LVADs only compared with IABPs only. Conclusions and Relevance: This study found that, among patients who underwent PCI for AMI complicated by cardiogenic shock, overall use of MCS devices was constant, and a 2.5-fold increase in intravascular microaxial LVAD use was found along with a corresponding decrease in IABP use and a significant hospital-level variation in MCS device use. These trends were observed despite limited clinical trial evidence of improved outcomes associated with device use

    Dynamics of Hot QCD Matter -- Current Status and Developments

    Full text link
    The discovery and characterization of hot and dense QCD matter, known as Quark Gluon Plasma (QGP), remains the most international collaborative effort and synergy between theorists and experimentalists in modern nuclear physics to date. The experimentalists around the world not only collect an unprecedented amount of data in heavy-ion collisions, at Relativistic Heavy Ion Collider (RHIC), at Brookhaven National Laboratory (BNL) in New York, USA, and the Large Hadron Collider (LHC), at CERN in Geneva, Switzerland but also analyze these data to unravel the mystery of this new phase of matter that filled a few microseconds old universe, just after the Big Bang. In the meantime, advancements in theoretical works and computing capability extend our wisdom about the hot-dense QCD matter and its dynamics through mathematical equations. The exchange of ideas between experimentalists and theoreticians is crucial for the progress of our knowledge. The motivation of this first conference named "HOT QCD Matter 2022" is to bring the community together to have a discourse on this topic. In this article, there are 36 sections discussing various topics in the field of relativistic heavy-ion collisions and related phenomena that cover a snapshot of the current experimental observations and theoretical progress. This article begins with the theoretical overview of relativistic spin-hydrodynamics in the presence of the external magnetic field, followed by the Lattice QCD results on heavy quarks in QGP, and finally, it ends with an overview of experiment results.Comment: Compilation of the contributions (148 pages) as presented in the `Hot QCD Matter 2022 conference', held from May 12 to 14, 2022, jointly organized by IIT Goa & Goa University, Goa, Indi

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
    corecore