8 research outputs found
Interaction potentials for soft and hard ellipsoids
Using results from colloid science we derive interaction potentials for
computer simulations of mixtures of soft or hard ellipsoids of arbitrary shape
and size. Our results are in many respects reminicent of potentials of the
Gay-Berne type but have a well-defined microscopic interpretation and no
adjustable parameters. Since our potentials require the calculation of similar
variables, the modification of existing simulation codes for Gay-Berne
potentials is straightforward. The computational performance should remain
unaffected.Comment: 8 pages, 4 figure
Iron Oxide Nanoparticles Employed as Seeds for the Induction of Microcrystalline Diamond Synthesis
Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. X-ray diffraction, visible, and ultraviolet Raman Spectroscopy, energy-filtered transmission electron microscopy , electron energy-loss spectroscopy, and X-ray photoelectron spectroscopy (XPS) were employed to study the carbon bonding nature of the films and to analyze the carbon clustering around the seed nanoparticles leading to diamond synthesis. The results indicate that iron oxide nanoparticles lose the O atoms, becoming thus active C traps that induce the formation of a dense region of trigonally and tetrahedrally bonded carbon around them with the ensuing precipitation of diamond-type bonds that develop into microcrystalline diamond films under chemical vapor deposition conditions. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods