20 research outputs found

    Characteristic length for pinning force density in Nb3SnNb{_3}Sn

    Full text link
    The pinning force density Fp(Jc,B)=JcΓ—BF{_p}(J{_c},B)=J{_c} \times B (where JcJ_c is the critical current density, BB is applied magnetic field) is one of main quantities which characterizes the resilience of a superconductor to carry dissipative-free transport current in applied magnetic field. Kramer (1973 J. Appl. Phys. 44 1360) and Dew-Hughes (1974 Phil. Mag. 30 293) proposed a widely used scaling law for the pinning force density amplitude: Fp(B)=Fp,max((p+q)(p+q)/(ppqq))(B/Bc2)p(1βˆ’B/Bc2)qF{_p}(B)=F{_{p,max}}((p+q){^{(p+q)}}/({p^p}{q^q}))(B/B_{c2}){^p}(1-B/B{_{c2}})^q, where Fp,maxF{_{p,max}}, Bc2B{_{c2}}, pp, and qq are free-fitting parameters. Since late 1970-s till now, several research groups reported experimental data for the dependence of Fp,maxF_{p,max} on the average grain size, dd, in Nb3SnNb{_3}Sn-based conductors. Godeke (2006 Supercond. Sci. Techn. 19 R68) proposed that the dependence obeys the law ∣Fp,max(d)∣=AΓ—log(1/d)+B|F{_{p,max}}(d)|=A \times log(1/d)+B . However, this scaling law has several problems, for instance, the logarithm is taken from a non-dimensionless variable, and ∣Fp,max(d)∣<0|F{_{p,max}}(d)|< 0 for large grain sizes and ∣Fp,max(d)βˆ£β†’βˆž|F{_{p,max}}(d)|\rightarrow \infty for dβ†’0d \rightarrow 0. Here we reanalysed full inventory of publicly available ∣Fp,max(d)∣|F{_{p,max}}(d)| data for Nb3SnNb{_3}Sn conductors and found that the dependence can be described by Fp,max(d)=Fp,max(0)exp(βˆ’d/Ξ΄)F_{p,max}(d)= F_{p,max}(0)exp(-d/{\delta}) law, where the characteristic length, Ξ΄{\delta}, is varying within a remarkably narrow range, i.e. Ξ΄=(175Β±13)nm{\delta}=(175 \pm 13) nm, for samples fabricated by different technologies. The interpretation of the result is based on an idea that the in-field supercurrent is flowing within a thin surface layer (the thickness of Ξ΄{\delta}) near the grain boundary surfaces. Alternative interpretation is that Ξ΄{\delta} represents characteristic length for the exponentially decay flux pinning potential from dominant defects in Nb3SnNb{_3}Sn superconductors, which are grain boundaries.Comment: 22 pages, 8 figure

    ЭкспрСссия iNOS ΠΈ биосинтСз ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‚ΠΎΠ² оксида Π°Π·ΠΎΡ‚Π° ΠΏΡ€ΠΈ ростС ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ гистогСнСза

    Get PDF
    The dynamics of the production of nitric oxide (NO) metabolites: nitrites, nitrates, volatile nitrosamines and iNOS expression was studiedΒ in mice with subcutaneous transplanted, spontaneous and chemical- induced tumors. Tumor growth was accompanied by increased productionΒ of nitrites + nitrates in tumors or their release with urine that not dependent on tumor histotype. The total concentration of nitrites andΒ nitrates in tumors reached micromolar levels characteristic of nitrosative stress. The ability of peritoneal macrophages + monocytes to generatesΒ nitrites was suppressed at the stage of intensive growth of the Lewis lung carcinoma, which may indicate a decrease in the cytotoxicΒ properties of immune cells. The possibility of formation in the Erlich carcinoma of volative N-nitrosodimethylamine and N-nitrosodiethylamineΒ compounds with pronounced carcinogenic properties was demonstrated. A positive expression of iNOS was revealed in some areasΒ of lung carcinoma at all investigated time points using the immunohistochemical method. The lungs metastases were not stain or weaklyΒ stained. This may indicate selection of the cells with a low activity of iNOS migrating in the lungs.Π˜Π·ΡƒΡ‡Π΅Π½Ρ‹ Π² Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‚ΠΎΠ² оксида Π°Π·ΠΎΡ‚Π° (NO): Π½ΠΈΡ‚Ρ€ΠΈΡ‚ΠΎΠ², Π½ΠΈΡ‚Ρ€Π°Ρ‚ΠΎΠ², Π»Π΅Ρ‚ΡƒΡ‡ΠΈΡ… Π½ΠΈΡ‚Ρ€ΠΎΠ·Π°ΠΌΠΈΠ½ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ экспрСссия Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π° – ΠΈΠ½Π΄ΡƒΡ†ΠΈΠ±Π΅Π»ΡŒΠ½ΠΎΠΉ NO-синтазы (iNOS) Π² экспСримСнтах Π½Π° ΠΌΡ‹ΡˆΠ°Ρ… c ΠΏΠΎΠ΄ΠΊΠΎΠΆΠ½ΠΎ ΠΏΠ΅Ρ€Π΅Π²ΠΈΠ²Π°Π΅ΠΌΡ‹ΠΌΠΈ, спонтанными и химичСски ΠΈΠ½Π΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌΠΈ опухолями. ВыявлСно ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠ΅ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π½ΠΈΡ‚Ρ€ΠΈΡ‚ΠΎΠ² + Π½ΠΈΡ‚Ρ€Π°Ρ‚ΠΎΠ² Π² опухолях ΠΈΠ»ΠΈ ΠΈΡ… выдСлСниС с ΠΌΠΎΡ‡ΠΎΠΉ ΠΏΡ€ΠΈ ростС ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ нСзависимо ΠΎΡ‚ ΠΈΡ… гистологичСского Ρ‚ΠΈΠΏΠ°. Буммарная концСнтрация Π½ΠΈΡ‚Ρ€ΠΈΡ‚ΠΎΠ² ΠΈ Π½ΠΈΡ‚Ρ€Π°Ρ‚ΠΎΠ² Π² опухолях достигаСт микромолярных ΡƒΡ€ΠΎΠ²Π½Π΅ΠΉ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Ρ… для Π½ΠΈΡ‚Ρ€ΠΎΠ·ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ стрСсса. Π‘ΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΡ‚ΠΎΠ½Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ°ΠΊΡ€ΠΎΡ„Π°Π³ΠΎΠ² + ΠΌΠΎΠ½ΠΎΡ†ΠΈΡ‚ΠΎΠ² Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½ΠΈΡ‚Ρ€ΠΈΡ‚Ρ‹ подавляСтся Π½Π° стадии интСнсивного роста ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ Π»Π΅Π³ΠΊΠΈΡ… Π›ΡŒΡŽΠΈΡΠ°, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Ρ‚ΡŒΒ Π½Π° сниТСниС цитотоксичСских свойств ΠΈΠΌΠΌΡƒΠ½Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. Показана Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ образования Π² опухолях ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ Π­Ρ€Π»ΠΈΡ…Π°Β Π»Π΅Ρ‚ΡƒΡ‡ΠΈΡ… N-Π½ΠΈΡ‚Ρ€ΠΎΠ·ΠΎΠ΄ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Π°ΠΌΠΈΠ½Π° ΠΈ N-нитрозодиэтиламина – соСдинСний с Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹ΠΌΠΈ ΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π½Ρ‹ΠΌΠΈ свойствами. Π‘ использованиСм иммуногистохимичСского ΠΌΠ΅Ρ‚ΠΎΠ΄Π° выявлСна ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ экспрСссия iNOS Π² ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Ρ… участках ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΉΒ Ρ‚ΠΊΠ°Π½ΠΈ ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ Π»Π΅Π³ΠΊΠΈΡ… Π½Π° всСх ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… сроках роста ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ. Π˜ΠΌΠΌΡƒΠ½ΠΎΠΎΠΊΡ€Π°ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ отсутствовало ΠΈΠ»ΠΈ Π±Ρ‹Π»ΠΎ слабым в мСтастазах Π»Π΅Π³ΠΊΠΈΡ…. Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ΠΎ сСлСкционном ΠΎΡ‚Π±ΠΎΡ€Π΅ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ с Π½ΠΈΠ·ΠΊΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ iNOS, ΠΌΠΈΠ³Ρ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ…Β Π² Π»Π΅Π³ΠΊΠΈΠ΅

    Structure and Properties of High-Strength Cu-7.7Nb Composite Wires under Various Steps of Strain and Annealing Modes

    No full text
    Microstructure and mechanical properties of in situ Cu-7.7Nb microcomposite (MC) wires manufactured by cold drawing with intermediate heat treatment (HT) have been studied. The evolution of Nb filaments morphology under various steps of deformation and modes of intermediate HT have been studied by the SEM and TEM methods. According to X-ray analysis, internal microstresses accumulate in the niobium filaments of the drawn MC, leading to a decrease in ductility. After heat treatment, the ductility of the wire increases significantly, since the microstresses in the niobium decrease even at the lowest HT temperature. The strength of the composite decreases under the HT because of negative changes in morphology and interface density of Nb filaments. The Nb texture is stable under the HT up to 800 Β°C. The Nb filaments morphology and semi-coherent boundaries at Cu/Nb interfaces are restored under the post-HT cold drawing, leading to a sharp increase in the strength of the MC wire. Reducing the niobium concentration to 7.7%Nb relative to the traditional MC with 16–20%Nb and the recovery of the wire ductility under the HT makes it possible to obtain long-scale high-strength microwires with an extremely small diameter of 0.05 mm and high ultimate tensile strength of 1227 MPa

    Роль оксида Π°Π·ΠΎΡ‚Π° ΠΈ ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ NO-синтазы Π² ΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π΅Π·Π΅

    Get PDF
    Introduction. Nitric oxide (NO) produced by NO synthases (NOS) is involved in the regulation of vital physiological functions. At the same time, NO and NOS are involved in events associated with the tumor process: mutagenesis, proliferation, apoptosis, angiogenesis, etc., exerting a multidirectional effect on the tumor.Objectives – analyze and summarize literature data concerning the role of NO and endothelial NOS (eNOS) in the initiation and progression of tumors, as well as in the inhibition of tumor growth.Materials and methods. In preparing the review, publications of information bases of biomedical literature were used: SciVerse Scopus (538), PubMed (1327), Web of Science (905), Russian Science Citation Index (125).Results. The molecular mechanisms of the action of NO and its derivatives on the initiation and progression of carcinogenesis have been explored. Numerous factors and conditions regulating the activity of eNOS in health and tumor growth have been analyzed. The molecular signaling pathways through which the pro-tumor effects of NO and eNOS, stimulating angiogenesis, lymphangiogenesis, are realized, including through the mobilization of stem cells, are considered.Conclusion. Nitric oxide produced by activated eNOS promotes tumor progression by increasing the proliferation of tumor cells, enhancing the action of pro-angiogenic factors, stimulating angiogenesis, lymphangiogenesis, and metastasis. Selective inhibition of increased eNOS activity may be a promising therapeutic approach aimed at reducing metastasis and tumor growth.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Оксид Π°Π·ΠΎΡ‚Π° (NO), ΠΏΡ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΉ NO-синтазами (NOS), участвуСт Π² рСгуляции гомСостаза Ρ†Π΅Π»ΠΎΠ³ΠΎ ряда ΠΆΠΈΠ·Π½Π΅Π½Π½ΠΎ Π²Π°ΠΆΠ½Ρ‹Ρ… систСм ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ°. Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя NO ΠΈ NOS Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½Ρ‹ Π² связанныС с ΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π΅Π·ΠΎΠΌ процСссы, Ρ‚Π°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ ΠΌΡƒΡ‚Π°Π³Π΅Π½Π΅Π·, рСгуляция ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΠΈ, Π°ΠΏΠΎΠΏΡ‚ΠΎΠ·Π°, Π°Π½Π³ΠΈΠΎΠ³Π΅Π½Π΅Π·Π°, ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Ρ‚ΡŒ Π½Π° ΠΎΠΏΡƒΡ…ΠΎΠ»ΡŒ Ρ€Π°Π·Π½ΠΎΠ½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ΅ дСйствиС.ЦСль исслСдования – ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈ ΠΎΠ±ΠΎΠ±Ρ‰ΠΈΡ‚ΡŒ Π΄Π°Π½Π½Ρ‹Π΅ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹, ΠΊΠ°ΡΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€ΠΎΠ»ΠΈ NO ΠΈ ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ NOS (eNOS) Π² ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΠΈ ΠΈ прогрСссии ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠ³ΠΎ роста.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΈ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅ ΠΎΠ±Π·ΠΎΡ€Π° Π±Ρ‹Π»ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π±Π°Π· биомСдицинской Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹: SciVerse Scopus (538), PubMed (1327), Web of Science (905), Российский индСкс Π½Π°ΡƒΡ‡Π½ΠΎΠ³ΠΎ цитирования (125).Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π˜Π·ΡƒΡ‡Π΅Π½Ρ‹ молСкулярныС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ дСйствия NO ΠΈ Π΅Π³ΠΎ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Π½Π° ΠΈΠ½ΠΈΡ†ΠΈΠ°Ρ†ΠΈΡŽ ΠΈ ΠΏΡ€ΠΎΠ³Ρ€Π΅ΡΡΠΈΡŽ ΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π΅Π·Π°. ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ многочислСнныС Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΈ условия, Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ eNOS Π² Π½ΠΎΡ€ΠΌΠ΅ ΠΈ ΠΏΡ€ΠΈ ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²ΠΎΠΌ ростС. РассмотрСны ΠΊΠ°Π»ΡŒΡ†ΠΈΠΉ- ΠΈ Π°Ρ€Π³ΠΈΠ½ΠΈΠ½-зависимыС ΠΏΡƒΡ‚ΠΈ рСгуляции активности Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ возмоТности Π΅Π³ΠΎ рСгуляции Π°Π½Ρ‚ΠΈΠΊΠ°Π½Ρ†Π΅Ρ€ΠΎΠ³Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΏΠΎΠ»ΠΈΡ„Π΅Π½ΠΎΠ»Π°ΠΌΠΈ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· молСкулярных ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΉ, посрСдством ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΡŽΡ‚ΡΡ ΠΏΡ€ΠΎΠΎΠΏΡƒΡ…ΠΎΠ»Π΅Π²Ρ‹Π΅ эффСкты NO ΠΈ eNOS, ΡΡ‚ΠΈΠΌΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ Π°Π½Π³ΠΈΠΎΠ³Π΅Π½Π΅Π· ΠΈ Π»ΠΈΠΌΡ„Π°Π½Π³ΠΈΠΎΠ³Π΅Π½Π΅Π·.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Оксид Π°Π·ΠΎΡ‚Π°, ΠΏΡ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΉ Π³ΠΈΠΏΠ΅Ρ€Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ eNOS, способствуСт прогрСссии ΠΎΠΏΡƒΡ…ΠΎΠ»Π΅ΠΉ, усиливаСт дСйствиС ΠΏΡ€ΠΎΠ°Π½Π³ΠΈΠΎΠ³Π΅Π½Π½Ρ‹Ρ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ², стимулируСт Π°Π½Π³ΠΈΠΎΠ³Π΅Π½Π΅Π·, Π»ΠΈΠΌΡ„Π°Π½Π³ΠΈΠΎΠ³Π΅Π½Π΅Π· ΠΈ мСтастазированиС. Π‘Π΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠΉ активности eNOS ΠΌΠΎΠΆΠ΅Ρ‚ ΡΡ‚Π°Ρ‚ΡŒ пСрспСктивным тСрапСвтичСским ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠΌ, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΌ Π½Π° Ρ‚ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠ΅ роста ΠΎΠΏΡƒΡ…ΠΎΠ»ΠΈ ΠΈ Π΅Π΅ мСтастазирования
    corecore