48 research outputs found

    Genome Analysis of the Anaerobic Thermohalophilic Bacterium Halothermothrix orenii

    Get PDF
    Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations

    Saturation and specificity of the Lon protease of Escherichia coli.

    Full text link
    Lon is an ATP-dependent protease of Escherichia coli. The lon mutation has a pleiotropic phenotype: UV sensitivity, mucoidy, deficiency for lysogenization by bacteriophage lambda and P1, and lower efficiency in the degradation of abnormal proteins. All of these phenotypes are correlated with the loss of protease activity. Here we examine the effects of overproduction of one Lon substrate, SulA, and show that it protects two other substrates from degradation. To better understand this protection, we mutagenized the sulA gene and selected for mutants that have partially or totally lost their ability to saturate the Lon protease and thus can no longer protect another substrate. Some of the SulA mutants lost their ability to protect RcsA from degradation but could still protect the O thermosensitive mutant protein (Ots). All of the mutants retained their capacity to induce cell division inhibition. It was also found that deletion of the C-terminal end of SulA affected its activity but did not affect its susceptibility to Lon. We propose that Lon may have more than one specificity for peptide cleavage

    Proteolysis and modulation of the activity of the cell division inhibitor SulA in Escherichia coli lon mutants.

    Full text link
    Intracellular accumulation of the inducible cell division inhibitor SulA is modulated by proteases that ensure its degradation, namely, the Lon protease and another ATP-dependent protease(s). Lon- cells are UV sensitive because SulA is stable. We asked whether these ATP-dependent proteases are more active when lon cells are grown at high temperature or in synthetic medium since these conditions decrease the UV sensitivity of lon cells. We found that these growth conditions have no direct effect on Lon-independent degradation of SulA. They may, instead, decrease the SulA-FtsZ interaction
    corecore