54 research outputs found

    Comparative analysis of the Potter Tower and a new Track Sprayer for the application of residual sprays in the laboratory

    Get PDF
    Background: Efforts to evaluate the residual efficacy of new indoor residual spraying (IRS) formulations have identified limitations with the industry standard laboratory sprayer, the Potter Spray Tower (PT). Calibrating the PT can be time-consuming, and the dosing of surfaces may not be as accurate or uniform as previously assumed. Methods: To address these limitations, the Micron Horizontal Track Sprayer with Spray Cabinet (TS) was developed to provide higher efficiency, ease of operation and deposition uniformity equal to or better than the PT. A series of studies were performed using a fluorescent tracer and three IRS formulations (Actellic® 300CS, K-Othrine WG250 and Suspend PolyZone) sprayed onto surfaces using either the PT or the TS. Results: Deposition volumes could be accurately calibrated for both spray systems. However, the uniformity of spray deposits was higher for the TS compared to the PT. Less than 12% of the volume sprayed using the PT reaches the target surface, with the remaining 88% unaccounted for, presumably vented out of the fume hood or coating the internal surfaces of the tower. In contrast, the TS deposits most of the spray on the floor of the spray chamber, with the rest contained therein. The total sprayed surface area in one run of the TS is 1.2 m2, and the operational zone for spray target placement is 0.7 m2, meaning that 58% of the applied volume deposits onto the targets. The TS can treat multiple surfaces (18 standard 15 × 15 cm tiles) in a single application, whereas the PT treats one surface at a time and a maximum area of around 0.0225 m2. An assessment of the time taken to perform spraying, including the setup, calibration and cleaning, showed that the cost of application using the TS was around 25–35 × less per tile sprayed. Standard operating procedures (SOPs) for calibration and use of both the Potter Tower and Track Sprayer have been developed. Conclusions: Overall, the TS represents a significant improvement over the PT in terms of the efficiency and accuracy of IRS formulation applications onto test substrates and offers a useful additional tool for researchers and manufacturers wanting to screen new active ingredients or evaluate the efficacy of IRS or other sprayable formulations for insect control

    A review of selective indoor residual spraying for malaria control

    Get PDF
    Background Indoor residual spraying (IRS) is one of the most effective malaria control tools. However, its application has become limited to specific contexts due to the increased costs of IRS products and implementation programmes. Selective spraying—selective spray targeted to particular areas/surfaces of dwellings—has been proposed to maintain the malaria control and resistance-management benefits of IRS while decreasing the costs of the intervention. Methods A literature search was conducted to find (1) studies that assessed the resting behaviour of Anopheles mosquitoes and (2) studies that evaluated the impact of selective spraying on entomological and malaria outcomes. Additional articles were identified through hand searches of all references cited in articles identified through the initial search. A cost model was developed from PMI VectorLink IRS country programmes, and comparative cost analysis reports to describe the overall cost benefits of selective IRS. Results In some studies, there appeared to be a clear resting preference for certain Anopheles species in terms of the height at which they rested. However, for other species, and particularly the major African malaria vectors, a clear resting pattern was not detected. Furthermore, resting behaviour was not measured in a standardized way. For the selective spray studies that were assessed, there was a wide range of spray configurations, which complicates the comparison of methods. Many of these spray techniques were effective and resulted in reported 25–68% cost savings and reduced use of insecticide. The reported cost savings in the literature do not always consider all of the IRS implementation costs. Using the IRS cost model, these savings ranged from 17 to 29% for programs that targeted Anopheles spp. and 18–41% for programmes that targeted Aedes aegypti. Conclusions Resting behaviour is generally measured in a simplistic way; noting the resting spot of mosquitoes in the morning. This is likely an oversimplification, and there is a need for better monitoring of resting mosquitoes. This may improve the target surface for selective spray techniques, which could reduce the cost of IRS while maintaining its effectiveness. Reporting of cost savings should be calculated considering the entire implementation costs, and a cost model was provided for future calculations

    Site-Specific Integration and Expression of an Anti-Malarial Gene in Transgenic Anopheles gambiae Significantly Reduces Plasmodium Infections

    Get PDF
    Diseases transmitted by mosquitoes have a devastating impact on global health and this is worsening due to difficulties with existing control measures and climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. Historically the genetic modification of insects has relied upon transposable elements which have many limitations despite their successful use. To circumvent these limitations the Streptomyces phage phiC31 integrase system has been successfully adapted for site-specific transgene integration in insects. Here, we present the first site-specific transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 targeting site at a defined genomic location. A second phase of genetic modification then achieved site-specific integration of Vida3, a synthetic anti-malarial gene. Expression of Vida3, specifically in the midgut of bloodfed females, offered consistent and significant protection against Plasmodium yoelii nigeriensis, reducing average parasite intensity by 85%. Similar protection was observed against Plasmodium falciparum in some experiments, although protection was inconsistent. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters for their expression, enabling those offering maximum effect with minimum fitness cost to be identified. In the future, this technology will allow effective comparisons and informed choices to be made, potentially leading to complete transmission blockade

    Efficacy of bednets with dual insecticide-treated netting (Interceptor® G2) on side and roof panels against Anopheles arabiensis in north-eastern Tanzania.

    Get PDF
    BACKGROUND: Optimising insecticide use and managing insecticide resistance are important to sustain gains against malaria using long-lasting insecticidal nets (LLINs). Restricting insecticides to where mosquitoes are most likely to make multiple contacts could reduce the quantity of insecticide needed to treat the nets. Previous studies have shown that nets partially treated with a pyrethroid insecticide had equivalent mortality compared to a fully treated net. This study compared the efficacy of: (i) whole Interceptor® G2 nets (IG2; a dual-active LLIN containing alpha-cypermethrin and chlorfenapyr), (ii) nets with roof panels made of IG2 netting, (iii) nets with side panels made of IG2 netting and (iv) whole untreated nets as test nets. METHODS: The study was conducted in cow-baited experimental huts, Moshi Tanzania, using a four-arm Latin square design. Test nets had 30 holes cut in panels to simulate a typical net after 2-3 year use. The trial data were analysed using generalized linear models with mortality, blood-feeding, exophily and deterrence against wild free-flying Anopheles arabiensis as outcomes and test nets as predictors. RESULTS: Mortality was significantly higher in the nets with roof IG2 [27%, P = 0.001, odds ratio (OR) = 51.0, 95% CI = 4.8-546.2), side IG2 (44%, P < 0.001, OR = 137.6, 95% CI = 12.2-1553.2] and whole IG2 (53%, P < 0.001, OR = 223.0, 95% CI = 19.07-2606.0) nettings than the untreated (1%) nets. Mortality was also significantly higher in the whole IG2 net compared to the net with roof IG2 netting (P = 0.009, OR = 4.4, 95% CI = 1.4-13.3). Blood feeding was 22% in untreated, 10% in roof IG2, 14% in side IG2 and 19% in whole IG2 nets. Exiting was 92% in untreated, 89% in roof IG2, 97% in side IG2 and 94% whole IG2 nets. CONCLUSION: The results show that although the roof-treated IG2 net induced greater mortality compared to untreated nets, its efficacy was reduced compared to whole IG2 nets. Therefore, there was no benefit to be gained from restricting dual-active ingredient IG2 netting to the roof of nets

    VECTRONâ„¢ T500, a new broflanilide insecticide for indoor residual spraying, provides prolonged control of pyrethroid-resistant malaria vectors.

    Get PDF
    BACKGROUND: Broflanilide is a newly discovered insecticide with a novel mode of action targeting insect γ-aminobutyric acid receptors. The efficacy of VECTRON™ T500, a wettable powder formulation of broflanilide, was assessed for IRS against wild pyrethroid-resistant malaria vectors in experimental huts in Benin. METHODS: VECTRON™ T500 was evaluated at 100 mg/m2 in mud and cement-walled experimental huts against wild pyrethroid-resistant Anopheles gambiae sensu lato (s.l.) in Covè, southern Benin, over 18 months. A direct comparison was made with Actellic® 300CS, a WHO-recommended micro-encapsulated formulation of pirimiphos-methyl, applied at 1000 mg/m2. The vector population at Covè was investigated for susceptibility to broflanilide and other classes of insecticides used for vector control. Monthly wall cone bioassays were performed to assess the residual efficacy of VECTRON™ T500 using insecticide susceptible An. gambiae Kisumu and pyrethroid-resistant An. gambiae s.l. Covè strains. The study complied with OECD principles of good laboratory practice. RESULTS: The vector population at Covè was resistant to pyrethroids and organochlorines but susceptible to broflanilide and pirimiphos-methyl. A total of 23,171 free-flying wild pyrethroid-resistant female An. gambiae s.l. were collected in the experimental huts over 12 months. VECTRON™ T500 induced 56%-60% mortality in wild vector mosquitoes in both cement and mud-walled huts. Mortality with VECTRON™ T500 was 62%-73% in the first three months and remained > 50% for 9 months on both substrate-types. By comparison, mortality with Actellic® 300CS was very high in the first three months (72%-95%) but declined sharply to < 40% after 4 months. Using a non-inferiority margin defined by the World Health Organization, overall mortality achieved with VECTRON™ T500 was non-inferior to that observed in huts treated with Actellic® 300CS with both cement and mud wall substrates. Monthly in situ wall cone bioassay mortality with VECTRON™ T500 also remained over 80% for 18 months but dropped below 80% with Actellic® 300CS at 6-7 months post spraying. CONCLUSION: VECTRON™ T500 shows potential to provide substantial and prolonged control of malaria transmitted by pyrethroid-resistant mosquito vectors when applied for IRS. Its addition to the current list of WHO-approved IRS insecticides will provide a suitable option to facilitate rotation of IRS products with different modes of action

    Mass production of genetically modified Aedes aegypti for field releases in Brazil

    Get PDF
    New techniques and methods are being sought to try to win the battle against mosquitoes. Recent advances in molecular techniques have led to the development of new and innovative methods of mosquito control based around the Sterile Insect Technique (SIT)(1-3). A control method known as RIDL (Release of Insects carrying a Dominant Lethal)(4), is based around SIT, but uses genetic methods to remove the need for radiation-sterilization(5-8). A RIDL strain of Ae. aegypti was successfully tested in the field in Grand Cayman(9,10); further field use is planned or in progress in other countries around the world. Mass rearing of insects has been established in several insect species and to levels of billions a week. However, in mosquitoes, rearing has generally been performed on a much smaller scale, with most large scale rearing being performed in the 1970s and 80s. For a RIDL program it is desirable to release as few females as possible as they bite and transmit disease. In a mass rearing program there are several stages to produce the males to be released: egg production, rearing eggs until pupation, and then sorting males from females before release. These males are then used for a RIDL control program, released as either pupae or adults(11,12). To suppress a mosquito population using RIDL a large number of high quality male adults need to be reared(13,14). The following describes the methods for the mass rearing of OX513A, a RIDL strain of Ae. aegypti (8), for release and covers the techniques required for the production of eggs and mass rearing RIDL males for a control program.Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnologia (CNPq

    Community evaluation of VECTRONâ„¢ T500, a broflanilide insecticide, for indoor residual spraying for malaria vector control in central Benin; a two arm non-inferiority cluster randomised trial.

    Get PDF
    VECTRON™ T500 is a wettable powder IRS formulation of broflanilide, a newly discovered insecticide. We performed a two-arm non-inferiority community randomised evaluation of VECTRON™ T500, compared to Fludora® Fusion against pyrethroid-resistant Anopheles gambiae s.l. in an area of high coverage with pyrethroid-only nets in the Za-Kpota District of central Benin. One round of IRS was applied in all consenting households in the study area. Sixteen clusters were randomised (1:1) to receive VECTRON™ T500 (100 mg/m2 for broflanilide) or Fludora® Fusion (200 mg/m2 for clothianidin and 25 mg/m2 for deltamethrin). Surveys were performed to assess adverse events and the operational feasibility and acceptability of VECTRON™ T500 among spray operators and household inhabitants. Human landing catches were conducted in 6 households every 1-2 months for up to 18 months post-intervention to assess the impact on vector densities, sporozoite rates and entomological inoculation rates. Bottle bioassays were performed to monitor vector susceptibility to pyrethroids, broflanilide and clothianidin. Monthly wall cone bioassays were conducted for 24 months to assess the residual efficacy of the IRS formulations using susceptible and pyrethroid-resistant An. gambiae s.l. A total of 26,562 female mosquitoes were collected during the study, of which 40% were An. gambiae s.l., the main malaria vector in the study area. The vector population showed high intensity pyrethroid resistance but was susceptible to broflanilide (6 µg/bottle) and clothianidin (90 µg/bottle). Using a non-inferiority margin of 50%, vector density indicated by the human biting rate (bites/person/night) was non-inferior in the VECTRON™ T500 arm compared to the Fludora® Fusion arm both indoors (0.846 bites/p/n in Fludora® Fusion arm vs. 0.741 bites/p/n in VECTRON™ T500 arm, IRR 0.54, 95% CI 0.22-1.35, p = 0.150) and outdoors (0.691 bites/p/n in Fludora® Fusion arm vs. 0.590 bites/p/n in VECTRON™ T500 clusters, IRR 0.75, 95% CI 0.41-1.38, p = 0.297). Sporozoite rates and entomological inoculation rates did not differ significantly between study arms (sporozoite rate: 0.9% vs 1.1%, p = 0. 0.746, EIR: 0.008 vs 0.006 infective bites per person per night, p = 0.589). Cone bioassay mortality with both VECTRON™ T500 and Fludora® Fusion was 100% for 24 months post-IRS application on both cement and mud treated house walls with both susceptible and pyrethroid-resistant strains of An. gambiae s.l. Perceived adverse events reported by spray operators and householders were generally very low (< 6%) in both study arms. VECTRON™ T500 was non-inferior to Fludora® Fusion in reducing the risk of malaria transmission by pyrethroid resistant vectors when applied for IRS in communities in central Benin. The insecticide showed prolonged residual efficacy on house walls, lasting over 24 months and had a high acceptability with homeowners. Community application of VECTRON™ T500 for IRS provides improved and prolonged control of pyrethroid resistant malaria vectors and enhances our capacity to manage insecticide resistance

    piggybac- and PhiC31-Mediated Genetic Transformation of the Asian Tiger Mosquito, Aedes albopictus (Skuse)

    Get PDF
    The Asian tiger mosquito, Aedes albopictus, is a highly invasive mosquito and has spread from South East Asia to Europe, the United States and northern areas of Asia in the past 30 years. Aedes mosquitoes transmit a range of viral diseases, including dengue and chikungunya. Aedes albopictus is generally considered to be somewhat less of a concern in this regard than Aedes aegypti. However a recent mutation in the chikungunya virus dramatically increased its transmission by Aedes albopictus, causing an important outbreak in the Indian Ocean in 2006 that eventually reached Italy in 2007. This highlights the potential importance of this mosquito, which can thrive much further from the Equator than can Aedes aegypti. This paper describes the first genetic engineering of the Asian tiger mosquito. This is an essential step towards the development of genetics-based control methods against this mosquito, and also an invaluable tool for basic research. We describe both transposon-based and site-specific integration methods

    Comparison of Life History Characteristics of the Genetically Modified OX513A Line and a Wild Type Strain of Aedes aegypti

    Get PDF
    The idea of implementing genetics-based insect control strategies modelled on the traditional SIT (Sterile Insect Technique), such as RIDL (Release of Insects carrying a Dominant Lethal), is becoming increasingly popular. In this paper, we compare a genetically modified line of Aedes aegypti carrying a tetracycline repressible, lethal positive feedback system (OX513A) with a genetically similar, unmodified counterpart and their respective responses to increasing larval rearing density using a constant amount of food per larva. The parameters that we examined were larval mortality, developmental rate (i.e., time to pupation), adult size and longevity
    • …
    corecore