43 research outputs found
Betalain production is possible in anthocyanin-producing plant species given the presence of DOPA-dioxygenase and L-DOPA
<p>Abstract</p> <p>Background</p> <p>Carotenoids and anthocyanins are the predominant non-chlorophyll pigments in plants. However, certain families within the order Caryophyllales produce another class of pigments, the betalains, instead of anthocyanins. The occurrence of betalains and anthocyanins is mutually exclusive. Betalains are divided into two classes, the betaxanthins and betacyanins, which produce yellow to orange or violet colours, respectively. In this article we show betalain production in species that normally produce anthocyanins, through a combination of genetic modification and substrate feeding.</p> <p>Results</p> <p>The biolistic introduction of DNA constructs for transient overexpression of two different dihydroxyphenylalanine (DOPA) dioxygenases (DODs), and feeding of DOD substrate (L-DOPA), was sufficient to induce betalain production in cell cultures of <it>Solanum tuberosum </it>(potato) and petals of <it>Antirrhinum majus</it>. HPLC analysis showed both betaxanthins and betacyanins were produced. Multi-cell foci with yellow, orange and/or red colours occurred, with either a fungal DOD (from <it>Amanita muscaria</it>) or a plant DOD (from <it>Portulaca grandiflora</it>), and the yellow/orange foci showed green autofluorescence characteristic of betaxanthins. Stably transformed <it>Arabidopsis thaliana </it>(arabidopsis) lines containing <it>35S: AmDOD </it>produced yellow colouration in flowers and orange-red colouration in seedlings when fed L-DOPA. These tissues also showed green autofluorescence. HPLC analysis of the transgenic seedlings fed L-DOPA confirmed betaxanthin production.</p> <p>Conclusions</p> <p>The fact that the introduction of DOD along with a supply of its substrate (L-DOPA) was sufficient to induce betacyanin production reveals the presence of a background enzyme, possibly a tyrosinase, that can convert L-DOPA to <it>cyclo</it>-DOPA (or dopaxanthin to betacyanin) in at least some anthocyanin-producing plants. The plants also demonstrate that betalains can accumulate in anthocyanin-producing species. Thus, introduction of a DOD and an enzyme capable of converting tyrosine to L-DOPA should be sufficient to confer both betaxanthin and betacyanin production to anthocyanin-producing species. The requirement for few novel biosynthetic steps may have assisted in the evolution of the betalain biosynthetic pathway in the Caryophyllales, and facilitated multiple origins of the pathway in this order and in fungi. The stably transformed <it>35S: AmDOD </it>arabidopsis plants provide material to study, for the first time, the physiological effects of having both betalains and anthocyanins in the same plant tissues.</p
Metabolic engineering of flavonoids in tomato (Solanum lycopersicum): the potential for metabolomics
A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants
Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164\ua0Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models
Regulation of UV-induced flavonoid production in Marchantia polymorpha: a role in the evolution of plants for land colonisation?
Plants are thought to have colonized the land around 500 million years ago. One of the major challenges the first pioneers faced was protection against UV radiation. UV has severe detrimental effects on plant cells
and was at particularly high levels during the period of land colonisation because the ozone layer was not fully developed. Seed plants use a mix of secondary metabolites as UV ‘sunscreens’, and of these the flavonoid
group of phenylpropanoids is of particular importance
Diagnosis of protozoa diarrhoea in Campylobacter patients increases markedly with molecular techniques.
Cryptosporidium and Giardia are major causes of diarrhoea globally, and two of the most notified infectious diseases in New Zealand. Diagnosis requires laboratory confirmation carried out mostly via antigen or microscopy-based techniques. However, these methods are increasingly being superseded by molecular techniques. Here we investigate the level of protozoa detection by molecular methods in campylobacteriosis cases missed through antigen-based assays and investigate different molecular testing protocols. We report findings from two observational studies; the first among 111 people during a Campylobacter outbreak and the second during normal surveillance activities among 158 people presenting with diarrhoea and a positive Campylobacter test, but negative Cryptosporidium and Giardia antigen-based test results. The molecular methods used for comparison were in-house end-point PCR tests targeting the gp60 gene for Cryptosporidium and gdh gene for Giardia. DNA extraction was performed with and without bead-beating and comparisons with commercial real-time quantitative (qPCR) were made using clinical Cryptosporidium positive sample dilutions down to 10-5. The Cryptosporidium prevalence was 9% (95% CI: 3-15; 10/111) and Giardia prevalence 21% (95% CI: 12-29; 23/111) in the 111 Campylobacter outbreak patients. The Cryptosporidium prevalence was 40% (95% CI: 32-48; 62/158) and Giardia prevalence 1.3% (95% CI: 0.2-4.5; 2/158) in the 158 routine surveillance samples. Sequencing identified Cryptosporidium hominis, C. parvum, and Giardia intestinalis assemblages A and B. We found no statistical difference in positive test results between samples using end-point PCR with or without bead-beating prior to DNA extraction, or between the in-house end-point PCR and qPCR. The qPCR Ct value was 36 (95% CI: 35-37) for 1 oocyst, suggesting a high limit of detection. In conclusion in surveillance and outbreak situations we found diagnostic serology testing underdiagnoses Cryptosporidium and Giardia coinfections in Campylobacter patients, suggesting the impact of protozoa infections may be underestimated through underdiagnosis using antigen-based assays