9 research outputs found
Recommended from our members
JWST MIRI/Medium Resolution Spectrograph (MRS) observations and spectral models of the underluminous yype Ia supernova 2022xkq
We present a JWST mid-infrared (MIR) spectrum of the underluminous Type Ia Supernova (SN Ia) 2022xkq, obtained with the medium-resolution spectrometer on the Mid-Infrared Instrument (MIRI) âŒ130 days post-explosion. We identify the first MIR lines beyond 14 ÎŒm in SN Ia observations. We find features unique to underluminous SNe Ia, including the following: isolated emission of stable Ni, strong blends of [Ti ii], and large ratios of singly ionized to doubly ionized species in both [Ar] and [Co]. Comparisons to normal-luminosity SNe Ia spectra at similar phases show a tentative trend between the width of the [Co iii] 11.888 ÎŒm feature and the SN light-curve shape. Using non-LTE-multi-dimensional radiation hydro simulations and the observed electron capture elements, we constrain the mass of the exploding WD. The best-fitting model shows that SN 2022xkq is consistent with an off-center delayed-detonation explosion of a near-Chandrasekhar mass WD (MWD
â1.37 Mâ) of high central density (Ïc â„ 2.0 Ă 109 g cmâ3) seen equator-on, which produced M(56Ni) =0.324 Mâ and M(58Ni) â„0.06 Mâ. The observed line widths are consistent with the overall abundance distribution; and the narrow stable Ni lines indicate little to no mixing in the central regions, favoring central ignition of subsonic carbon burning followed by an off-center deflagration-to-detonation transition beginning at a single point. Additional observations may further constrain the physics revealing the presence of additional species including Cr and Mn. Our work demonstrates the power of using the full coverage of MIRI in combination with detailed modeling to elucidate the physics of SNe Ia at a level not previousl
Recommended from our members
A JWST near- and mid-infrared nebular spectrum of the type Ia supernova 2021aefx
We present JWST near-infrared (NIR) and mid-infrared (MIR) spectroscopic observations of the nearby normal Type Ia supernova (SN) SN 2021aefx in the nebular phase at +255 days past maximum light. Our Near Infrared Spectrograph (NIRSpec) and Mid Infrared Instrument observations, combined with ground-based optical data from the South African Large Telescope, constitute the first complete optical+NIR+MIR nebular SN Ia spectrum covering 0.3â14 ÎŒm. This spectrum unveils the previously unobserved 2.5â5 ÎŒm region, revealing strong nebular iron and stable nickel emission, indicative of high-density burning that can constrain the progenitor mass. The data show a significant improvement in sensitivity and resolution compared to previous Spitzer MIR data. We identify numerous NIR and MIR nebular emission lines from iron-group elements as well as lines from the intermediate-mass element argon. The argon lines extend to higher velocities than the iron-group elements, suggesting stratified ejecta that are a hallmark of delayed-detonation or double-detonation SN Ia models. We present fits to simple geometric line profiles to features beyond 1.2 ÎŒm and find that most lines are consistent with Gaussian or spherical emission distributions, while the [Ar iii] 8.99 ÎŒm line has a distinctively flat-topped profile indicating a thick spherical shell of emission. Using our line profile fits, we investigate the emissivity structure of SN 2021aefx and measure kinematic properties. Continued observations of SN 2021aefx and other SNe Ia with JWST will be transformative to the study of SN Ia composition, ionization structure, density, and temperature, and will provide important constraints on SN Ia progenitor and explosion models
Recommended from our members
Ground-based and JWST observations of SN 2022pul. I. Unusual signatures of carbon, oxygen, and circumstellar interaction in a peculiar type Ia supernova
Nebular-phase observations of peculiar Type Ia supernovae (SNe Ia) provide important constraints on progenitor scenarios and explosion dynamics for both these rare SNe and the more common, cosmologically useful SNe Ia. We present observations from an extensive ground- and space-based follow-up campaign to characterize SN 2022pul, a super-Chandrasekhar mass SN Ia (alternatively "03fg-like" SN), from before peak brightness to well into the nebular phase across optical to mid-infrared (MIR) wavelengths. The early rise of the light curve is atypical, exhibiting two distinct components, consistent with SN Ia ejecta interacting with dense carbonâoxygen (C/O)-rich circumstellar material (CSM). In the optical, SN 2022pul is most similar to SN 2012dn, having a low estimated peak luminosity (MB = â18.9 mag) and high photospheric velocity relative to other 03fg-like SNe. In the nebular phase, SN 2022pul adds to the increasing diversity of the 03fg-like subclass. From 168 to 336 days after peak B-band brightness, SN 2022pul exhibits asymmetric and narrow emission from [O i] λλ6300, 6364 (FWHM â 2000 km sâ1), strong, broad emission from [Ca ii] λλ7291, 7323 (FWHM â 7300 km sâ1), and a rapid Fe iii to Fe ii ionization change. Finally, we present the first ever optical-to-MIR nebular spectrum of an 03fg-like SN Ia using data from JWST. In the MIR, strong lines of neon and argon, weak emission from stable nickel, and strong thermal dust emission (with T â 500 K), combined with prominent [O i] in the optical, suggest that SN 2022pul was produced by a white dwarf merger within C/O-rich CSM
Ground-based and JWST Observations of SN 2022pul. II. Evidence from nebular spectroscopy for a violent merger in a peculiar type Ia supernova
We present an analysis of ground-based and JWST observations of SN 2022pul, a peculiar "03fg-like" (or "super-Chandrasekhar") Type Ia supernova (SN Ia), in the nebular phase at 338 days postexplosion. Our combined spectrum continuously covers 0.4â14 ÎŒm and includes the first mid-infrared spectrum of a 03fg-like SN Ia. Compared to normal SN Ia 2021aefx, SN 2022pul exhibits a lower mean ionization state, asymmetric emission-line profiles, stronger emission from the intermediate-mass elements (IMEs) argon and calcium, weaker emission from iron-group elements (IGEs), and the first unambiguous detection of neon in a SN Ia. A strong, broad, centrally peaked [Ne ii] line at 12.81 ÎŒm was previously predicted as a hallmark of "violent merger" SN Ia models, where dynamical interaction between two sub-MCh white dwarfs (WDs) causes disruption of the lower-mass WD and detonation of the other. The violent merger scenario was already a leading hypothesis for 03fg-like SNe Ia; in SN 2022pul it can explain the large-scale ejecta asymmetries seen between the IMEs and IGEs and the central location of narrow oxygen and broad neon. We modify extant models to add clumping of the ejecta to reproduce the optical iron emission better, and add mass in the innermost region (<2000 km sâ1) to account for the observed narrow [O i] λλ6300, 6364 emission. A violent WDâWD merger explains many of the observations of SN 2022pul, and our results favor this model interpretation for the subclass of 03fg-like SNe Ia
A JWST Medium Resolution MIRI Spectrum and Models of the Type Ia supernova 2021aefx at +415 d
International audienceWe present a JWST MIRI/MRS spectrum (5-27 m) of the Type Ia supernova (SN Ia), SN 2021aefx at days past -band maximum. The spectrum, which was obtained during the iron-dominated nebular phase, has been analyzed in combination with previous JWST observations of SN 2021aefx, to provide the first JWST time series analysis of an SN Ia. We find the temporal evolution of the [Co III] 11.888 m feature directly traces the decay of Co. The spectra, line profiles, and their evolution are analyzed with off-center delayed-detonation models. Best fits were obtained with White Dwarf (WD) central densities of g cm, a WD mass of M=1.33-1.35M, a WD magnetic field of G, and an off-center deflagration-to-detonation transition at 0.5 seen opposite to the line of sight of the observer. The inner electron capture core is dominated by energy deposition from -rays whereas a broader region is dominated by positron deposition, placing SN 2021aefx at +415 d in the transitional phase of the evolution to the positron-dominated regime. The formerly `flat-tilted' profile at 9 m now has significant contribution from [Ni IV], [Fe II], and [Fe III] and less from [Ar III], which alters the shape of the feature as positrons excite mostly the low-velocity Ar. Overall, the strength of the stable Ni features in the spectrum is dominated by positron transport rather than the Ni mass. Based on multi-dimensional models, our analysis strongly supports a single-spot, close-to-central ignition with an indication for a pre-existing turbulent velocity field, and excludes a multiple-spot, off-center ignition
JWST low-resolution MIRI spectral observations of SN 2021aefx: high-density burning in a type Ia supernova
We present a JWST/MIRI low-resolution mid-infrared (MIR) spectroscopic observation of the normal Type Ia supernova (SN Ia) SN 2021aefx at +323 days past rest-frame B-band maximum light. The spectrum ranges from 4 to 14 ÎŒm and shows many unique qualities, including a flat-topped [Ar iii] 8.991 ÎŒm profile, a strongly tilted [Co iii] 11.888 ÎŒm feature, and multiple stable Ni lines. These features provide critical information about the physics of the explosion. The observations are compared to synthetic spectra from detailed nonâlocal thermodynamic equilibrium multidimensional models. The results of the best-fitting model are used to identify the components of the spectral blends and provide a quantitative comparison to the explosion physics. Emission line profiles and the presence of electron capture elements are used to constrain the mass of the exploding white dwarf (WD) and the chemical asymmetries in the ejecta. We show that the observations of SN 2021aefx are consistent with an off-center delayed detonation explosion of a nearâChandrasekhar mass (MCh) WD at a viewing angle of â30° relative to the point of the deflagration to detonation transition. From the strengths of the stable Ni lines, we determine that there is little to no mixing in the central regions of the ejecta. Based on both the presence of stable Ni and the Ar velocity distributions, we obtain a strict lower limit of 1.2 Mâ for the initial WD, implying that most sub-MCh explosions models are not viable models for SN 2021aefx. The analysis here shows the crucial importance of MIR spectra in distinguishing between explosion scenarios for SNe Ia
Recommended from our members
SN 2022acko: The First Early Far-ultraviolet Spectra of a Type IIP Supernova
We present five far- and near-ultraviolet spectra of the Type II plateau supernova, SN 2022acko, obtained 5, 6, 7, 19, and 21 days after explosion, all observed with the Hubble Space Telescope/Space Telescope Imaging Spectrograph. The first three epochs are earlier than any Type II plateau supernova has been observed in the far-ultraviolet revealing unprecedented characteristics. These three spectra are dominated by strong lines, primarily from metals, which contrasts with the featureless early optical spectra. The flux decreases over the initial time series as the ejecta cool and line blanketing takes effect. We model this unique data set with the non-local thermodynamic equilibrium radiation transport code CMFGEN, finding a good match to the explosion of a low-mass red supergiant with energy E kin = 6 Ă 1050 erg. With these models we identify, for the first time, the ions that dominate the early ultraviolet spectra. We present optical photometry and spectroscopy, showing that SN 2022acko has a peak absolute magnitude of V = â 15.4 mag and plateau length of âŒ115 days. The spectra closely resemble those of SN 2005cs and SN 2012A. Using the combined optical and ultraviolet spectra, we report the fraction of flux as a function of bluest wavelength on days 5, 7, and 19. We create a spectral time-series of Type II supernovae in the ultraviolet, demonstrating the rapid decline of flux over the first few weeks of evolution. Future observations of Type II supernovae are required to map out the landscape of exploding red supergiants, with and without circumstellar material, which is best revealed in high-quality ultraviolet spectra. © 2023. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Recommended from our members
Strong Carbon Features and a Red Early Color in the Underluminous Type Ia SN 2022xkq
We present optical, infrared, ultraviolet, and radio observations of SN 2022xkq, an underluminous fast-declining Type Ia supernova (SN Ia) in NGC 1784 (D â 31 Mpc), from <1 to 180 days after explosion. The high-cadence observations of SN 2022xkq, a photometrically transitional and spectroscopically 91bg-like SN Ia, cover the first days and weeks following explosion, which are critical to distinguishing between explosion scenarios. The early light curve of SN 2022xkq has a red early color and exhibits a flux excess that is more prominent in redder bands; this is the first time such a feature has been seen in a transitional/91bg-like SN Ia. We also present 92 optical and 19 near-infrared (NIR) spectra, beginning 0.4 days after explosion in the optical and 2.6 days after explosion in the NIR. SN 2022xkq exhibits a long-lived C i 1.0693 ÎŒm feature that persists until 5 days post-maximum. We also detect C ii λ6580 in the pre-maximum optical spectra. These lines are evidence for unburnt carbon that is difficult to reconcile with the double detonation of a sub-Chandrasekhar mass white dwarf. No existing explosion model can fully explain the photometric and spectroscopic data set of SN 2022xkq, but the considerable breadth of the observations is ideal for furthering our understanding of the processes that produce faint SNe Ia. © 2023. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]