24 research outputs found

    Optimal Quantum Clocks

    Get PDF
    A quantum clock must satisfy two basic constraints. The first is a bound on the time resolution of the clock given by the difference between its maximum and minimum energy eigenvalues. The second follows from Holevo's bound on how much classical information can be encoded in a quantum system. We show that asymptotically, as the dimension of the Hilbert space of the clock tends to infinity, both constraints can be satisfied simultaneously. The experimental realization of such an optimal quantum clock using trapped ions is discussed.Comment: 4 pages, revtex, 1 figure, revision contains some new result

    Quantum disentanglers

    Get PDF
    It is not possible to disentangle a qubit in an unknown state ψ>|\psi> from a set of (N-1) ancilla qubits prepared in a specific reference state 0>|0>. That is, it is not possible to {\em perfectly} perform the transformation (ψ,0...,0+˚0,ψ,...,0+˚...+0,0,...ψ)˚0,...,0>ψ>(|\psi,0...,0\r +|0,\psi,...,0\r +...+ |0,0,...\psi\r) \to |0,...,0>\otimes |\psi>. The question is then how well we can do? We consider a number of different methods of extracting an unknown state from an entangled state formed from that qubit and a set of ancilla qubits in an known state. Measuring the whole system is, as expected, the least effective method. We present various quantum ``devices'' which disentangle the unknown qubit from the set of ancilla qubits. In particular, we present the optimal universal disentangler which disentangles the unknown qubit with the fidelity which does not depend on the state of the qubit, and a probabilistic disentangler which performs the perfect disentangling transformation, but with a probability less than one.Comment: 8 pages, 1 eps figur

    Universal Algorithm for Optimal Estimation of Quantum States from Finite Ensembles

    Get PDF
    We present a universal algorithm for the optimal quantum state estimation of an arbitrary finite dimensional system. The algorithm specifies a physically realizable positive operator valued measurement (POVM) on a finite number of identically prepared systems. We illustrate the general formalism by applying it to different scenarios of the state estimation of N independent and identically prepared two-level systems (qubits).Comment: 4 pages, RevTeX, minor modifications to the tex

    Universal Quantum Information Compression

    Full text link
    Suppose that a quantum source is known to have von Neumann entropy less than or equal to S but is otherwise completely unspecified. We describe a method of universal quantum data compression which will faithfully compress the quantum information of any such source to S qubits per signal (in the limit of large block lengths).Comment: RevTex 4 page

    Optimal, reliable estimation of quantum states

    Get PDF
    Accurately inferring the state of a quantum device from the results of measurements is a crucial task in building quantum information processing hardware. The predominant state estimation procedure, maximum likelihood estimation (MLE), generally reports an estimate with zero eigenvalues. These cannot be justified. Furthermore, the MLE estimate is incompatible with error bars, so conclusions drawn from it are suspect. I propose an alternative procedure, Bayesian mean estimation (BME). BME never yields zero eigenvalues, its eigenvalues provide a bound on their own uncertainties, and it is the most accurate procedure possible. I show how to implement BME numerically, and how to obtain natural error bars that are compatible with the estimate. Finally, I briefly discuss the differences between Bayesian and frequentist estimation techniques.Comment: RevTeX; 14 pages, 2 embedded figures. Comments enthusiastically welcomed

    Nonlinear Qubit Transformations

    Full text link
    We generalise our previous results of universal linear manipulations [Phys. Rev. A63, 032304 (2001)] to investigate three types of nonlinear qubit transformations using measurement and quantum based schemes. Firstly, nonlinear rotations are studied. We rotate different parts of a Bloch sphere in opposite directions about the z-axis. The second transformation is a map which sends a qubit to its orthogonal state (which we define as ORTHOG). We consider the case when the ORTHOG is applied to only a partial area of a Bloch sphere. We also study nonlinear general transformation, i.e. (theta,phi)->(theta-alpha,phi), again, applied only to part of the Bloch sphere. In order to achieve these three operations, we consider different measurement preparations and derive the optimal average (instead of universal) quantum unitary transformations. We also introduce a simple method for a qubit measurement and its application to other cases.Comment: minor corrections. To appear in PR

    Phase-covariant quantum cloning of qudits

    Full text link
    We study the phase-covariant quantum cloning machine for qudits, i.e. the input states in d-level quantum system have complex coefficients with arbitrary phase but constant module. A cloning unitary transformation is proposed. After optimizing the fidelity between input state and single qudit reduced density opertor of output state, we obtain the optimal fidelity for 1 to 2 phase-covariant quantum cloning of qudits and the corresponding cloning transformation.Comment: Revtex, 6 page

    Quantum Bayes rule

    Get PDF
    We state a quantum version of Bayes's rule for statistical inference and give a simple general derivation within the framework of generalized measurements. The rule can be applied to measurements on N copies of a system if the initial state of the N copies is exchangeable. As an illustration, we apply the rule to N qubits. Finally, we show that quantum state estimates derived via the principle of maximum entropy are fundamentally different from those obtained via the quantum Bayes rule.Comment: REVTEX, 9 page

    Quantum asymmetric cryptography with symmetric keys

    Full text link
    Based on quantum encryption, we present a new idea for quantum public-key cryptography (QPKC) and construct a whole theoretical framework of a QPKC system. We show that the quantum-mechanical nature renders it feasible and reasonable to use symmetric keys in such a scheme, which is quite different from that in conventional public-key cryptography. The security of our scheme is analyzed and some features are discussed. Furthermore, the state-estimation attack to a prior QPKC scheme is demonstrated.Comment: 8 pages, 1 figure, Revtex

    Information, disturbance and Hamiltonian quantum feedback control

    Get PDF
    We consider separating the problem of designing Hamiltonian quantum feedback control algorithms into a measurement (estimation) strategy and a feedback (control) strategy, and consider optimizing desirable properties of each under the minimal constraint that the available strength of both is limited. This motivates concepts of information extraction and disturbance which are distinct from those usually considered in quantum information theory. Using these concepts we identify an information trade-off in quantum feedback control.Comment: 13 pages, multicol Revtex, 2 eps figure
    corecore