533 research outputs found

    RNA-Seq analysis of splicing in Plasmodium falciparum uncovers new splice junctions, alternative splicing and splicing of antisense transcripts.

    Get PDF
    Over 50% of genes in Plasmodium falciparum, the deadliest human malaria parasite, contain predicted introns, yet experimental characterization of splicing in this organism remains incomplete. We present here a transcriptome-wide characterization of intraerythrocytic splicing events, as captured by RNA-Seq data from four timepoints of a single highly synchronous culture. Gene model-independent analysis of these data in conjunction with publically available RNA-Seq data with HMMSplicer, an in-house developed splice site detection algorithm, revealed a total of 977 new 5' GU-AG 3' and 5 new 5' GC-AG 3' junctions absent from gene models and ESTs (11% increase to the current annotation). In addition, 310 alternative splicing events were detected in 254 (4.5%) genes, most of which truncate open reading frames. Splicing events antisense to gene models were also detected, revealing complex transcriptional arrangements within the parasite's transcriptome. Interestingly, antisense introns overlap sense introns more than would be expected by chance, perhaps indicating a functional relationship between overlapping transcripts or an inherent organizational property of the transcriptome. Independent experimental validation confirmed over 30 new antisense and alternative junctions. Thus, this largest assemblage of new and alternative splicing events to date in Plasmodium falciparum provides a more precise, dynamic view of the parasite's transcriptome

    Plate-based transfection and culturing technique for genetic manipulation of Plasmodium falciparum

    Get PDF
    Genetic manipulation of malaria parasites remains an inefficient, time-consuming and resource-intensive process. Presented here is a set of methods for 96-well plate-based transfection and culture that improve the efficiency of genetic manipulation of Plasmodium falciparum. Compared to standard protocols plate-based transfection requires 20-fold less DNA, transient transfection efficiency achieved is approximately seven-fold higher, whilst stable transfection success rate is above 90%. Furthermore the utility of this set of protocols to generate a knockout of the PfRH3 pseudogene, screened by whole-cell PCR, is demonstrated. The methods and tools presented here will facilitate genome-scale genetic manipulation of P. falciparum

    Improved methods for magnetic purification of malaria parasites and haemozoin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria parasites generate free haem upon catabolism of host haemoglobin during their intraerythrocytic growth cycle. In order to minimize oxidative toxicity of the ferric iron, the free haem molecules are polymerized into the biomineral beta-haematin (commonly referred to as haemozoin). Haemozoin crystals are paramagnetic, and this property can be exploited for the purification of late stage parasites as they contain larger haemozoin crystals than early stage parasites and uninfected cells. Commercially available magnets that were originally developed for the purpose of antibody-mediated cell purification are widely used for this purpose. As these methods are not necessarily optimized for parasite purification, the relationship between magnetic field strength and the quantity and quality of yield during parasite purification was explored.</p> <p>Methods</p> <p>Inexpensive rare-earth neodymium magnets with commercially available disposable columns were employed to explore the relationship between magnetic field strength and recovery of free haemozoin and infected erythrocytes (iRBCs).</p> <p>Results</p> <p>Yields of free haemozoin increased nearly linearly with increasing magnetic field strength to the strongest fields tested (8,500 Gauss). Stronger magnetic fields also improved the recovery of iRBCs with no detrimental effects on parasite viability. An in-house constructed magnetic stand, built for $75 in materials, produced superior results when compared with much more expensive commercial products.</p> <p>Conclusions</p> <p>Existing protocols for the magnetic purification of free haemozoin and iRBCs result in sub-optimal yields. Inexpensive high-strength neodymium magnets offer a better option, resulting in higher yields with no detrimental effects on parasite viability.</p

    Transcriptome Sequencing Demonstrates that Human Papillomavirus Is Not Active in Cutaneous Squamous Cell Carcinoma

    Get PDF
    β-Human papillomavirus (β-HPV) DNA is present in some cutaneous squamous cell carcinomas (cuSCCs), but no mechanism of carcinogenesis has been determined. We used ultra-high-throughput sequencing of the cancer transcriptome to assess whether papillomavirus transcripts are present in these cancers. In all, 67 cuSCC samples were assayed for β-HPV DNA by PCR, and viral loads were measured with type-specific quantitative PCR. A total of 31 SCCs were selected for whole transcriptome sequencing. Transcriptome libraries were prepared in parallel from the HPV18-positive HeLa cervical cancer cell line and HPV16-positive primary cervical and periungual SCCs. Of the tumors, 30% (20/67) were positive for β-HPV DNA, but there was no difference in β-HPV viral load between tumor and normal tissue (P=0.310). Immunosuppression and age were significantly associated with higher viral load (P=0.016 for immunosuppression; P=0.0004 for age). Transcriptome sequencing failed to identify papillomavirus expression in any of the skin tumors. In contrast, HPV16 and HPV18 mRNA transcripts were readily identified in primary cervical and periungual cancers and HeLa cells. These data demonstrate that papillomavirus mRNA expression is not a factor in the maintenance of cuSCCs
    corecore