5 research outputs found

    Optimization of Coupled Computational Modeling and Experimentation for Metallic Systems: Systematic Microstructural Feature – Mechanical Property Correlation for Cold-Sprayable Powders

    No full text
    Additive manufacturing technologies place materials at the direct point of need of the warfighter, enabling the development of optimal, situation-specific means to produce and repair parts of Army and DoD weapons systems. In the case of solid-state AM, a full understanding of the metallic powder is critical with producing ideal consolidated material properties reliably and repeatably. \n\nBy way of iteratively coupling computational models with supportive experimental testing, one can rapidly archetype differences in processing methods, alloy compositions, and heat treatments for metallic powders that serve as feedstock for these AM technologies. Through the combination of thermodynamic models, advanced characterization, and dynamic nano-indentation, representative correlations are established between microstructural features and mechanical properties, enabling the development of enhanced feedstock materials that can achieve the specific needs of the warfighter efficiently without forfeiting quality. This represents both a holistic and a materials-by-design approach to AM through the deliberate use of computation to drive down the discovery process and allow feedstock powders to be engineered with specific properties dictated by Army requirements for performance.\n\nIn a case study of Al 6061, unique observations were made through the combination of modeling and experimentation. It was discovered that the precipitation kinetics were greatly accelerated in powders and therefore, typical heat treatment processes used for cast-aluminum alloys were not valid. Due to this shift in precipitation sequences, high-temperature treatment was limited to discourage precipitate and grain coarsening. Additionally, when compared to typical cast Al 6061, the main precipitation hardening phase shifts from Mg2Si to Al4Cu2Mg8Si7, changing how aging mechanisms were accounted for. These conclusions were supported by both the computational models and experimental results. Through the generation of numerous data, the models were calibrated, enabling more efficient and precise development of tailored material characteristics from specific microstructural features to serve as an input in a holistic through-process model for a solid-state AM process and guide future experimentation.\

    Evolution of Fe-Rich Phases in Thermally Processed Aluminum 6061 Powders for AM Applications

    No full text
    Gas-atomized powders are frequently used in metal additive manufacturing (MAM) processes. During consolidation, certain properties and microstructural features of the feedstock can be retained. Such features include porosity, secondary phases, and oxides. Of particular importance to alloys such as Al 6061, secondary phases found in the feedstock powder can be directly related to those of the final consolidated form, especially for solid-state additive manufacturing. Al 6061 is a heat-treatable alloy that is commonly available in powder form. While heat treatments of 6061 have been widely studied in wrought form, little work has been performed to study the process in powders. This work investigates the evolution of the Fe-containing precipitates in gas-atomized Al 6061 powder through the use of scanning and transmission electron microscopy (SEM and TEM) and energy dispersive X-ray spectroscopy (EDS). The use of coupled EDS and thermodynamic modeling suggests that the as-atomized powders contain Al13Fe4 at the microstructure boundaries in addition to Mg2Si. After one hour of thermal treatment at 530 °C, it appears that the dissolution of Mg2Si and Al13Fe4 occurs concurrently with the formation of Al15Si2M4, as suggested by thermodynamic models

    Characterization of Thermally Treated Gas-Atomized Al 5056 Powder

    No full text
    Aluminum 5056 is a work-hardenable alloy known for its corrosion resistance with new applications in additive manufacturing. A good understanding of the secondary phases in Al 5056 powders is important for understanding the properties of the final parts. In this study, the effects of different thermal treatments on the microstructure of Al 5056 powder were studied. Thermodynamic models were used to guide the interpretation of the microstructure as a function of thermal treatment, providing insight into the stability of different possible phases present in the alloy. Through the use of transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS), combined with thermodynamic modeling, a greater understanding of the internal microstructure of Al 5056 powder has been achieved in both the as-atomized and thermally treated conditions. Evidence of natural aging within these powders was observed, which speaks to the shelf-life of these powders and the importance of proper treatment and storage to maintain consistent results

    Investigating Transportation Policies to Reduce Air Pollution in Hong Kong

    Get PDF
    This report, prepared for Friends of the Earth (Hong Kong), examined the current transportation policies in relation to air pollution in Hong Kong. The transport policies of several cities including Seoul, Singapore, and Rome were examined in relation to reduction of congestion and air pollution. The pedestrians were surveyed and observations of traffic patterns in Hong Kong were made, then the team recommended a reevaluation of the bus system, several limited traffic zones, and several changes to the cross-harbor tunnels

    Geopolymer - The Green Cement

    Get PDF
    Cement and concrete are widely used in building and construction practices throughout the world. The use of Ordinary Portland Cement (OPC) requires use of additional energy and poses environmental damage. The objective of this project is to provide a green alternative construction material to OPC by geopolymerization of industrial wastes. This study made an effort to develop a low-cost working recipe that utilizes a combination of fly ash (FA) and red mud (RM) with different additives to create a geopolymer with comparable or better performance to OPC. The effectiveness of the methodology was tested by evaluating the synthesis factors and testing the unconfined compressive strength
    corecore