49 research outputs found

    X-ray Spectroscopy of the Contact Binary VW Cephei

    Full text link
    Short-period binaries represent extreme cases in the generation of stellar coronae via a rotational dynamo. Such stars are important for probing the origin and nature of coronae in the regimes of rapid rotation and activity saturation. VW Cep (P=0.28 d) is a relatively bright, partially eclipsing, and very active object. Light curves made from Chandra/HETGS data show flaring and rotational modulation, but no eclipses. Velocity modulation of emission lines indicates that one component dominates the X-ray emission. The emission measure is highly structured, having three peaks. Helium-like triplet lines give electron densities of about 3.0E+10 - 18.0E+10 /cm^3. We conclude that the corona is predominantly on the polar regions of the primary star and compact.Comment: Accepted for publication in the Astropysical Journal, 23 June 2006; 22 pages, 15 figure

    Stellar Coronal Spectroscopy with the Chandra HETGS

    Full text link
    Spectroscopy with the Chandra High Energy Transmission Grating Spectrometer provides details on X-ray emission and activity from young and cool stars through resolution of emission lines from a variety of ions. We are beginning to see trends in activity regarding abundances, emission measures, and variability. Here we contrast spectra of TV Crt, a weak-lined T Tauri star, with TW Hya, a Classical T Tauri star. TV Crt has a spectrum more like magnetic activity driven coronae, relative to the TW Hya spectrum, which we have interpreted as due to accretion-produced X-rays. We have also observed the long period system, IM Pegasi to search for rotational modulation, and to compare activity in a long period active binary to shorter period systems and to the pre-main sequence stars. We detected no rotational modulation, but did see long-duration flares.Comment: 5 pages, 2 figures; to be published in IAU Symposium 219: "Stars as Suns: Activity, Evolution, Planets" (Ed. A. Dupree and A. O. Benz

    A Tight Upper Limit on Oscillations in the Ap star Epsilon Ursae Majoris from WIRE Photometry

    Full text link
    Observations of Epsilon UMa obtained with the star tracker on the Wide Field Infrared Explorer (WIRE) satellite during a month in mid-2000 are analyzed. This is one of the most precise photometry of an Ap star. The amplitude spectrum is used to set an upper limit of 75 parts per million for the amplitude of stellar pulsations in this star unless it accidentally oscillates with a single mode at the satellite orbit, its harmonics or their one day aliases. This is the tightest limit put on the amplitude of oscillations in an Ap star. As the rotation period of Epsilon UMa is relatively short (5.1 d), it cannot be argued that the observations were made at a wrong rotational phase. Our results thus support the idea that some Ap stars do not pulsate at all.Comment: 4 pages, 4 figures, 2 style files, accepted for publication in ApJ

    Asteroseismology of massive stars with the TESS mission: the runaway Beta Cep pulsator PHL 346 = HN Aqr

    Full text link
    We report an analysis of the first known Beta Cep pulsator observed by the TESS mission, the runaway star PHL 346 = HN Aqr. The star, previously known as a singly-periodic pulsator, has at least 34 oscillation modes excited, 12 of those in the g-mode domain and 22 p modes. Analysis of archival data implies that the amplitude and frequency of the dominant mode and the stellar radial velocity were variable over time. A binary nature would be inconsistent with the inferred ejection velocity from the Galactic disc of 420 km/s, which is too large to be survivable by a runaway binary system. A kinematic analysis of the star results in an age constraint (23 +- 1 Myr) that can be imposed on asteroseismic modelling and that can be used to remove degeneracies in the modelling process. Our attempts to match the excitation of the observed frequency spectrum resulted in pulsation models that were too young. Hence, asteroseismic studies of runaway pulsators can become vital not only in tracing the evolutionary history of such objects, but to understand the interior structure of massive stars in general. TESS is now opening up these stars for detailed asteroseismic investigation.Comment: accepted for ApJ

    Kepler Mission Stellar and Instrument Noise Properties

    Get PDF
    Kepler Mission results are rapidly contributing to fundamentally new discoveries in both the exoplanet and asteroseismology fields. The data returned from Kepler are unique in terms of the number of stars observed, precision of photometry for time series observations, and the temporal extent of high duty cycle observations. As the first mission to provide extensive time series measurements on thousands of stars over months to years at a level hitherto possible only for the Sun, the results from Kepler will vastly increase our knowledge of stellar variability for quiet solar-type stars. Here we report on the stellar noise inferred on the timescale of a few hours of most interest for detection of exoplanets via transits. By design the data from moderately bright Kepler stars are expected to have roughly comparable levels of noise intrinsic to the stars and arising from a combination of fundamental limitations such as Poisson statistics and any instrument noise. The noise levels attained by Kepler on-orbit exceed by some 50% the target levels for solar-type, quiet stars. We provide a decomposition of observed noise for an ensemble of 12th magnitude stars arising from fundamental terms (Poisson and readout noise), added noise due to the instrument and that intrinsic to the stars. The largest factor in the modestly higher than anticipated noise follows from intrinsic stellar noise. We show that using stellar parameters from galactic stellar synthesis models, and projections to stellar rotation, activity and hence noise levels reproduces the primary intrinsic stellar noise features.Comment: Accepted by ApJ; 26 pages, 20 figure
    corecore