1,519 research outputs found

    Selective Population of Edge States in a 2D Topological Band System

    Full text link
    We consider a system of interacting spin-one atoms in a hexagonal lattice under the presence of a synthetic gauge field. Quenching the quadratic Zeeman field is shown to lead to a dynamical instability of the edge modes. This, in turn, leads to a spin current along the boundary of the system which grows exponentially fast in time following the quench. Tuning the magnitude of the quench can be used to selectively populate edge modes of different momenta. Implications of the intrinsic symmetries of Hamiltonian on the dynamics are discussed. The results hold for atoms with both antiferromagnetic and ferromagnetic interactions.Comment: 7 pages (expanded Supplemental Material

    Transport phenomenology for a holon-spinon fluid

    Full text link
    We propose that the normal-state transport in the cuprate superconductors can be understood in terms of a two-fluid model of spinons and holons. In our scenario, the resistivity is determined by the properties of the holons while magnetotransport involves the recombination of holons and spinons to form physical electrons. Our model implies that the Hall transport time is a measure of the electron lifetime, which is shorter than the longitudinal transport time. This agrees with our analysis of the normal-state data. We predict a strong increase in linewidth with increasing temperature in photoemission. Our model also suggests that the AC Hall effect is controlled by the transport time.Comment: 4 pages, 1 postscript figure. Uses RevTeX, epsf, multico

    Dissipation and Tunnelling in Quantum Hall Bilayers

    Full text link
    We discuss the interplay between transport and intrinsic dissipation in quantum Hall bilayers, within the framework of a simple thought experiment. We compute, for the first time, quantum corrections to the semiclassical dynamics of this system. This allows us to re-interpret tunnelling measurements on these systems. We find a strong peak in the zero-temperature tunnelling current that arises from the decay of Josephson-like oscillations into incoherent charge fluctuations. In the presence of an in-plane field, resonances in the tunnelling current develop an asymmetric lineshape.Comment: 4 pages, 3 figure

    Quantised Bulk Conductivity as a Local Chern Marker

    Get PDF
    A central property of Chern insulators is the robustness of the topological phase and edge states to impurities in the system. Despite this, Chern number cannot be straightforwardly calculated in the presence of disorder. Recently, work has been done to propose a local analog of the Chern number, called local markers, that can be used to characterise disordered systems. However, it was unclear whether the proposed markers represented a physically-measurable property of the system. Here we propose a local marker starting from a physical argument, as a local cross-conductivity measured in the bulk of the system. We find the explicit form of the marker for a non-interacting system of electrons on the lattice and show that it corresponds to existing expressions for the Chern number. Examples are calculated for a variety of disordered and amorphous systems, showing that it is precisely quantised to the Chern number and robust against disorder.Comment: 10 pages, 9 figure

    Quantum and Classical Dissipative Effects on Tunnelling in Quantum Hall Bilayers

    Full text link
    We discuss the interplay between transport and dissipation in quantum Hall bilayers. We show that quantum effects are relevant in the pseudospin picture of these systems, leading either to direct tunnelling currents or to quantum dissipative processes that damp oscillations around the ground state. These quantum effects have their origins in resonances of the classical spin system.Comment: 12 pages. Minor changes from v

    On a Network Model of Localization in a Random Magnetic Field

    Full text link
    We consider a network model of snake states to study the localization problem of non-interacting fermions in a random magnetic field with zero average. After averaging over the randomness, the network of snake states is mapped onto MM coupled SU(2N)(2N) spin chains in the N→0N \rightarrow 0 limit. The number of snake states near the zero-field contour, MM, is an even integer. In the large conductance limit g=Me22πℏg = M {e^2 \over 2 \pi \hbar} (M≫2M \gg 2), it turns out that this system is equivalent to a particular representation of the U(2N)/U(N)×U(N){\rm U}(2N) / {\rm U}(N) \times {\rm U}(N) sigma model (N→0N \rightarrow 0) {\it without} a topological term. The beta function β(1/M)\beta (1/M) of this sigma model in the 1/M1/M expansion is consistent with the previously known β(g)\beta (g) of the unitary ensemble. These results and further plausible arguments support the conclusion that all the states are localized.Comment: Revtex, 6 pages, 3 figures appended as an uuencoded fil

    Hyperbolic calorons, monopoles, and instantons

    Full text link
    We construct families of SO(3)-symmetric charge 1 instantons and calorons on the space H^3 x R. We show how the calorons include instantons and hyperbolic monopoles as limiting cases. We show how Euclidean calorons are the flat space limit of this family.Comment: 11 pages, no figures 1 reference added Published version available at: http://www.springerlink.com/content/k0j4815u54303450

    Active Response Gravity Offload and Method

    Get PDF
    A variable gravity field simulator can be utilized to provide three dimensional simulations for simulated gravity fields selectively ranging from Moon, Mars, and micro-gravity environments and/or other selectable gravity fields. The gravity field simulator utilizes a horizontally moveable carriage with a cable extending from a hoist. The cable can be attached to a load which experiences the effects of the simulated gravity environment. The load can be a human being or robot that makes movements that induce swinging of the cable whereby a horizontal control system reduces swinging energy. A vertical control system uses a non-linear feedback filter to remove noise from a load sensor that is in the same frequency range as signals from the load sensor

    Degenerate Bose liquid in a fluctuating gauge field

    Full text link
    We study the effect of a strongly fluctuating gauge field on a degenerate Bose liquid, relevant to the charge degrees of freedom in doped Mott insulators. We find that the superfluidity is destroyed. The resulting metallic phase is studied using quantum Monte Carlo methods. Gauge fluctuations cause the boson world lines to retrace themselves. We examine how this world-line geometry affects the physical properties of the system. In particular, we find a transport relaxation rate of the order of 2kT, consistent with the normal state of the cuprate superconductors. We also find that the density excitations of this model resemble that of the full tJ model.Comment: 4 pages. Uses RevTeX, epsf, multicols macros. 5 postscript figure
    • …
    corecore