10 research outputs found

    Energy and exergy analysis of H2O/libr absorption heat pumps for combined heating and cooling applications

    Get PDF
    The aim of this study is to analyze the feasibility of the single-effect H2O/LiBr absorption cycle for the production of combined heating and cooling. To achieve this, we firstly describe the main changes that the cycle requires in comparison with the conventional singleeffect absorption chiller. Then, we evaluate the limits of the cycle in terms of temperature lifts and LiBr crystallization, so this information will be useful to set the suitable applications for this cycle. Finally, we study the energy and exergy performance of the cycle. As main results, when the chilled and the heated water temperatures are 10 and 55 ÂșC respectively, the COPc and the COPH are up to 0.85. This leads to a COPtot of up to 1.65. The ECOP achieved by the heat pump ranges between 0.41 and 0.49.This work has been supported by the European WEDISTRICT project (grant agreement N°857801) co- founded by the EC under the call H2020-LC-SC3-2018-2019-2020 and by the Tarragona Provincial Council under the collaboration framework agreement between the Tarragona Pro-vincial Council and the Rovira i Virgili University for the period 2020-2023 with the reference number 2022/#

    Performance analysis of absorption heat transformer cycles using ionic liquids based on imidazolium cation as absorbents with 2,2,2-trifluoroethanol as refrigerant

    No full text
    10.1016/j.enconman.2014.04.077A detailed thermodynamic performance analysis of a single-stage absorption heat transformer and double absorption heat transformer cycles using new working pairs composed of ionic liquids (1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF4]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4])) as absorbent and 2,2,2-trifluoroethanol (TFE) as refrigerant has been studied. Several performance indicators were used to evaluate and compare the performance of the cycles using the TFE + [emim][BF4] and TFE + [bmim][BF4] working pairs with the conventional H2O + LiBr and organic TFE + TEGDME working pairs. The obtained results show that the ionic liquid based working pairs are suitable candidates to replace the conventional H2O + LiBr working pairs in order to avoid the disadvantages associated with it mainly crystallization and corrosion and also they perform better (higher gross temperature lift) than TFE + TEGDME working pair at several operating conditions considered in this work

    Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions

    No full text
    A review of current and future district cooling (DC) technologies, operational, economic, and environmental aspects, and analysis and optimization methodologies is presented, focusing on the demands of cooling-dominated regions. Sustainable energy sources (i.e., renewable, waste/excess electricity and heat, natural/artificial cold) and cooling/storage technology options with emphasis on heat-driven refrigeration, and their integrations in published DC design and analysis studies are reviewed. Published DC system analysis, modeling, and optimization methodologies are analyzed in terms of their objectives, scope, sustainability-related criteria, and key findings. The current and future development of DC in the Gulf Cooperation Council (GCC) region, a major developing cooling-dominated market, is examined more specifically in terms of current and future energy sources and their use, and economic, environmental, and regulatory aspects, with potential technical and non-technical solutions identified to address regional DC sustainability challenges. From the review of published DC design and analysis studies presented, collective research trends in key thematic areas are analyzed, with suggested future research themes proposed towards the sustainability enhancement of DC systems in predominantly hot climates

    Integration of Municipal Air-Conditioning, Power, and Gas Supplies Using an LNG Cold Exergy-Assisted Kalina Cycle System

    No full text
    A Kalina cycle-based integration concept of municipal air-conditioning, electricity and gas is investigated thermodynamically, economically, and environmentally to reduce the carbon intensity of these supplies, with attention to hot climatic conditions. The proposed poly-generation system is driven by low-grade renewable or surplus heat, and utilizes waste exergy from liquefied natural gas vaporization for refrigeration and power augmentation. At nominal conditions (130 °C driving heat), approximately 561 and 151 kJ of refrigeration and useful power per kg of liquefied natural gas regasified are generated by the proposed system, respectively, at effective first-law and exergetic efficiencies of 33% and 35%, respectively. The Kalina sub-system condenser cryogenic heat rejection condition is found to triple the system useful electrical output compared with high ambient temperature condenser heat sinking conditions. Per million ton per annum of liquefied natural gas vaporization capacity, yearly net power savings of approximately 74 GWhe could be achieved compared to standard air-conditioning, electricity, and gas supply systems, resulting in 11.1 kton of natural gas saved and 30.4 kton of carbon dioxide-equivalent emissions avoided annually. The yearly net monetary savings would range from 0.9 to 4.7 million USD per million ton per annum of liquefied natural gas regasified at local subsidized and international electricity market prices, respectively, with corresponding payback periods of 1.7 and 2.5 years, respectively

    New Developments and Progress in Absorption Chillers for Solar Cooling Applications

    No full text
    At present, novel, small-to-large capacity absorption chillers with unique technical features have emerged on the global market, and laboratory and pre-industrial prototypes have also been developed. These chillers have been designed for the efficient use of low-grade heat sources; some are air-cooled, small capacity systems; compact water/LiBr chillers; or solar-gas-fired single/double-effect chillers. Also, some advanced commercial absorption chillers have an extensive temperature glide in the driving heat stream (>30 K) which extracts approximately twice as much heat (~200%) as the single-effect chiller. This large temperature glide means that the chillers are well suited to solar thermal collector installations and district heating networks, and the extra driving heat increases cold production. Moreover, recent advances in R718 turbo compressor technologies have helped to solve the problems water/LiBr absorption chillers have in adapting to extreme operating conditions (e.g., high ambient temperature, >35 °C) by using a compressor-boosted absorption chiller configuration. This review paper presents and discusses the developments and progress in these absorption chiller technologies. In summary, the new absorption chillers may be useful for developing efficient, cost-effective, and robust solar cooling solutions that are needed to mitigate the unsustainable impact of the rising global demand for space cooling

    A Novel H2O/LiBr Absorption Heat Pump with Condensation Heat Recovery for Combined Heating and Cooling Production: Energy Analysis for Different Applications

    No full text
    The aim of this study is to analyze the feasibility of the single-effect H2O/LiBr absorption heat pump cycle to produce combined heating and cooling. To achieve this, first, the main changes that the absorption cycle requires are described in comparison with the conventional single-effect absorption chiller. Then, the cycle’s operational limits in terms of temperature lift and LiBr crystallization are evaluated. In this sense, driving heat temperatures required for these applications range from 85 °C to 120 °C. The energy and exergy performance (in terms of cooling and heating capacities, cooling and heating coefficient of performance, and exergy coefficient of performance) of the cycle is theoretically studied for five different types of applications that require simultaneous heating and cooling: building air conditioning, a 4th generation district heating and cooling network, a sports center with an indoor swimming pool, a hybrid air conditioning system with an absorption heat pump and a desiccant evaporative cooling system, and simultaneous cooling and water purification application for coastal areas. The system performance in terms of the cooling coefficient of performance varies in the range of 0.812–0.842, in terms of heating coefficient of performance from 0.58 to 1.842, and in terms of exergy coefficient of performance from 0.451 to 0.667. The application with the highest exergy coefficient of performance is the 4th generation district heating and cooling network

    Small capacity absorption systems for cooling and power with a scroll expander and ammonia based working fluids

    No full text
    Up to now, the use of ammonia/water absorption cycles has been mainly limited to the production of refrigeration or air conditioning but due to the relatively high generator pressure some authors have proposed the integration in parallel of an expander to produce cooling and power simultaneously. This feature could provide many benefits in the future such as the use of solar thermal energy to partially cover the heating, cooling and electricity demand of a building. In the other hand the life cycle cost of the absorption system is improved because of the increase in the number of running hours in periods in which there is no demand for cooling but the demand for electrical power is still important. This paper shows a new combined absorption system using a scroll expander and three different working fluids using ammonia as refrigerant: ammonia/water, ammonia/lithium nitrate and ammonia/sodium thiocyanate. The scroll expander performance maps were obtained experimentally and modeled to predict the power production, rotational speed and exhaust temperature of the expander and included in the complete absorption cycle model build using Engineering Equation Solver (EES) Software. This system produces different amounts of cooling and power at the desired power/cooling ratio to cover varying demand profiles

    Energy Analysis of Control Measures for Reducing Aerosol Transmission of COVID-19 in the Tourism Sector of the “Costa Daurada” Spain

    No full text
    In this paper, the use of HVAC systems and non-HVAC control measures to reduce virus-laden bioaerosol exposure in a highly occupied indoor space is investigated. A simulation tool was used to model the fate and transport of bioaerosols in an indoor space in the hotel industry (bar or pub) with three types of HVAC system (central air handling system (CAHS), dedicated outdoor air system (DOAS), and wall unit system (WUS)). Non-HVAC control measures such as portable air cleaners (PAC) and local exhaust fans were considered. Occupant exposure was evaluated for 1 ÎŒm bioaerosols, which transport SARS-CoV-2, for 3 h/day of continuous source and exposure. The combined effects of ventilation (400 l/s of outdoor air), recirculated air filtration (90% efficacy), and a PAC with a capacity up to 900 m3/h mitigated the (normalized) integrated exposure of the occupant by 0.66 to 0.51 (CAHS) and 0.43 to 0.36 (DOAS). In the case of WUS, the normalized integrated exposure was reduced by up to 0.2 when the PAC with a capacity of up to 900 m3/h was used. The corresponding electricity consumed increased by 297.4 kWh/year (CAHS) and 482.7 kWh/year (DOAS), while for the WUS it increased by 197.1 kWh/year
    corecore