66 research outputs found

    Hepatoprotective Effects of Total Triterpenoids and Total Flavonoids from Vitis vinifera L against Immunological Liver Injury in Mice

    Get PDF
    Suosuo grape (the fruits of Vitis vinifera L) has been used for prevention and treatment of liver diseases in Uighur folk medicine in China besides its edible value. In this study, the hepatoprotective effects of total triterpenoids (VTT) and total flavonoids (VTF) from Suosuo grape were evaluated in Bacille-Calmette-Guerin- (BCG-) plus-lipopolysaccharide- (LPS-) induced immunological liver injury (ILI) in mice. Various dose groups (50, 150, and 300 mg/kg) of VTT and VTF alleviated the degree of liver injury of ILI mice, effectively reduced the BCG/LPS-induced elevated liver index and spleen index, hepatic nitric oxide (NO), and malondialdehyde (MDA) content, increased liver homogenate alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and restored hepatic superoxide dismutase (SOD) activity in ILI mice. VTT and VTF also significantly inhibited intrahepatic expression of Th1 cytokines (IFN-γ and IL-2) in ILI mice and increased intrahepatic expression of Th2 cytokines (IL-4 and IL-10). Moreover, the increased Bax/Bcl-2 ratio was significantly downregulated by VTT and VTF in liver tissue of ILI mice. These results are comparable to those of biphenyl dicarboxylate (DDB, the reference hepatoprotective agent) and suggest that VTT and VTF play a protective role against immunological liver injury, which may have important implications for our understanding of the immunoregulatory mechanisms of this plant

    B serum proteome profiles revealed dysregulated proteins and mechanisms associated with insomnia patients: A preliminary study

    Get PDF
    BackgroundInsomnia is a clinical problem of significant public health importance; however, the underlying pathogenesis of this disorder is not comprehensively understood.MethodsTo identify potential treatment targets and unfold one of the gaps that were involved in insomnia pathological mechanisms, we employed a tandem mass tag-based (TMT) quantitative proteomics technology to detect differentially expressed proteins (DEPs) in serum from patients with insomnia and controls. DEPs were further analyzed by bioinformatics platforms. In addition, parallel reaction monitoring (PRM) was used to verify the TMT results.ResultsPatients with insomnia had poorer sleep quality compared with healthy controls. A total of 106 DEPs were identified among patients with insomnia and controls. They were mainly enriched in immune and inflammation-related biological functions and signaling pathways. Using the protein–protein interaction network, we screened the 10 most connected proteins as key DEPs. We predicted that four key DEPs were subject to targeted regulation by natural compounds of herbs. Eight key DEPs were validated using PRM in an additional 15 patients with insomnia and 15 controls, and the results also supported the experimental findings.ConclusionWe identified aberrantly expressed proteins in insomnia that may be involved in the immune-inflammatory response. The 10 key DEPs screened may be potential targets for insomnia, especially FN1, EGF, HP, and IGF1. The results of this study will broaden our understanding of the pathological mechanisms of insomnia and provide more possibilities for pharmacotherapy

    Modélisation thermomécanique du processus de solidification d’une solution aqueuse d’urée

    No full text
    De nombreux liquides subissent un changement de volume lorsqu'ils gèlent. Pour l'eau et certaines solutions aqueuses, l'expansion volumétrique au cours de la solidification peut entraîner une série de problèmes mécaniques. Dans l'industrie automobile, l'expansion de changement de phase (ECP) met en cause la sécurité des réservoirs des véhicules aux saisons froides. Une des questions les plus problématiques est l'expansion de la solution aqueuse d'urée (SAU) dans le réservoir du système SCR des véhicules diesels. Lorsque le liquide gèle, les composants intérieurs ainsi que le réservoir lui-même peuvent être endommagés dû à la pression apportée par la dilatation du liquide solidifié. Dans le centre , une méthode numérique est fortement attendue afin de prévoir la répartition de la température, des contraintes ainsi que de la déformation des composants lors d'un processus de solidification. Du fait que les informations sur la solution d'urée restent limitées, la structure de la glace cristalline ainsi que ses comportements mécaniques sont principalement passés en revue. La préférence d'orientation de croissance des grains de glace à l'interface de cristallisation met en évidence, l'hypothèse de l'ECP non-isotropique pour des problèmes de solidification. Une série de tests mécaniques a été réalisée afin d'obtenir les propriétés basiques de SAU à l'état solide à différentes températures. Une méthode « différence-volume » a été appliquée pour mesurer la variation de la densité de la SAU lors du processus de solidification. Pour la suite, des études analytiques thermiques et mécaniques sont effectuées. Pour l'aspect thermique, le problème classique de Stefan est passé en revue. Un schéma de différence-finie est proposé et il permet de calculer la position de l'interface et les profils de température pour un modèle sphérique. Pour l'aspect mécanique, un modèle sphérique similaire est établi à la base de l'ECP non-isotropique. Les solutions analytiques des contraintes et de la pression liquide sont présentées en fonction de la position de l'interface. Une méthode éléments-finis thermo-mécaniquement couplée est développée afin de simuler efficacement les contraintes thermiques, les déformations et la pression liquide dans un problème de solidification avec des relations constitutives de comportement non-linéaires. Les contraintes thermiques sont calculées en chaque point d'intégration en résolvant les équations elasto-viscoplastiques avec l'ECP non-isotropique. Le problème aux limites est résolu par la méthode de Newton-Raphson. Cette procédure est implémentée dans le package Abaqus via un UMAT. La méthode est validée d'abord pour les aspects algorithmiques par les solutions analytiques, puis pour les paramètres de comportement retenus par une série de tests expérimentaux. De plus, une étude de cas réaliste sur un réservoir de la SAU est introduite. Les avantages et les limitations de la méthode numérique lors d'une application sont évalués.Many liquids involve a change in volume when they freeze. For water and some aqueous solutions, the volumetric expansion during solidification may invoke a series of mechanical issues. In automobile industries, the security of tanks installed in vehicles is challenged by the Phase-Change Expansion (PCE) of the freezing liquid in cold conditions. One of the most problematic issues is the expansion of Aqueous Urea Solution (AUS) in the SCR tank of diesel vehicles. As the liquid freezes, interior components may be deformed under the stress or pressure of the expanding AUS, potentially leading to failures of the storage tank. In the product center, a numerical method is of high demand to perform thermo-mechanical analysis to predict the temperature and stress distribution during a liquid solidification process in their tanks. In this work, a bibliographic study is carried out first on the basic knowledge of the ice and AUS. Due to the very limited information on urea solution in the literature, the structure and behaviors of freshwater ice are mainly reviewed. The grain orientation preference at the growth interface of polycrystalline ice provides the evidence of non-isotropic PCE for the solidification problem. A series of mechanical tests have been performed to characterize the basic properties of the solidified AUS at different temperatures. The density evolution is measured using a volume-difference method. Then, both thermal and mechanical analytical studies are performed. The classical thermal Stefan problem is reviewed and a finite-difference scheme is proposed to calculate the interface position and temperature profiles of a spherical solidification model. Mechanically, a similar spherical model is established based on the non-isotropic PCE phenomenon of ice growth. The solutions of stress distribution and liquid pressure evolution are given as a function of the solidification interface position. Finally, an efficient thermo-mechanical FEM is proposed to evaluate the thermal stress, strain, displacement and pressure in solidification problems with highly nonlinear relations. Three particular methods for treating the liquid phase with fixed-grid approaches are introduced. The thermal stress is computed at each integration point by integrating the elasto-viscoplastic constitutive equations with non-isotropic PCE. Then, the boundary value problem is solved using the full Newton-Raphson method. This procedure is implemented into the FE package Abaqus via a UMAT subroutine. The numerical model is validated first for the algorithmic aspect by the analytical solutions, and then for the parametric calibration by a series of benchmark tests. In the end, a realistic study case on a real-size AUS storage tank is introduced. Advantages and limitations of the numerical method in the application are evaluated

    The Effect of Polyaniline (PANI) Coating via Dielectric-Barrier Discharge (DBD) Plasma on Conductivity and Air Drag of Polyethylene Terephthalate (PET) Yarn

    No full text
    In this paper, a simple method to prepare PANI-coated conductive PET yarn is reported, which involves pre-applying aniline and HCl vapors on PET surface and subsequent dielectric-barrier discharge (DBD) plasma treatment of the coated yarn under atmospheric pressure. The volume resistivity of the optimal sample was about 1.8 × 105 times lower than that of the control. Moreover, with the increase of coating amount of PANI, the air drag of PET yarns improved gradually. The surface chemistry of the treated yarn was analyzed by Fourier transform-infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS), while the morphology was observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). This study offers a new method to prepare conductive fabric via air-jet loom and is expected to increase the weaving efficiency of air-jet loom

    Global Boundedness in a Logarithmic Keller–Segel System

    No full text
    In this paper, we propose a user-friendly integral inequality to study the coupled parabolic chemotaxis system with singular sensitivity under the Neumann boundary condition. Under a low diffusion rate, the classical solution of this system is uniformly bounded. Our proof replies on the construction of the energy functional containing ∫Ω|v|4v2 with v>0. It is noteworthy that the inequality used in the paper may be applied to study other chemotaxis systems

    Current Status and State-of-Art Developments in Temperature Sensor Technology

    No full text
    Temperature is one of the seven base units of the physical world, and the temperature sensors have wide applications in the lives, research, and industries. This chapter presents a brief introduction on four classic types of temperature sensors, including thermometers, thermocouples, resistance temperature detectors (RTD), and thermistors. These traditional temperature sensors have some limitations and are not suitable for dynamic measurements. To meet the demand for temperature measurement under various extreme and complex conditions, four advanced types of temperature sensors are introduced. The optical temperature sensors, including the infrared thermal imaging and laser temperature sensor, utilize the thermal radiation and are capable of measuring high-temperature objects without direct contact. The small and flexible fiber optic temperature sensors take advantage of the fact that the temperature plays a significant role in the optical transmission characteristics of the optical fiber, and it can be used in point, quasi-distributed, or distributed form. Acoustic temperature sensors measure the speed and frequency of the sound wave under different temperatures to obtain the temperature, and it is commonly used for health monitoring of complex structures. Furthermore, micro/nano temperature sensors are ideal for specific applications due to their small size, high sensitivity, and rapid response time

    Evaluating and Diagnosing Road Intersection Operation Performance Using Floating Car Data

    No full text
    Urban road intersections play an important role in deciding the total travel time and the overall travel efficiency. In this paper, an innovative traffic grid model has been proposed, which evaluates and diagnoses the traffic status and the time delay at intersections across whole urban road networks. This method is grounded on a massive amount of floating car data sampled at a rate of 3 s, and it is composed of three major parts. (1) A grid model is built to transform intersections into discrete cells, and the floating car data are matched to the grids through a simple assignment process. (2) Based on the grid model, a set of key traffic parameters (e.g., the total time delay of all the directions of the intersection and the average speed of each direction) is derived. (3) Using these parameters, intersections are evaluated and the ones with the longest traffic delays are identified. The obtained intersections are further examined in terms of the traffic flow ratio and the green time ratio as well as the difference between these two variables. Using the central area of Beijing as the case study, the potential and feasibility of the proposed method are demonstrated and the unreasonable signal timing phases are detected. The developed method can be easily transferred to other cities, making it a useful and practical tool for traffic managers to evaluate and diagnose urban signal intersections as well as to design optimal measures for reducing traffic delay and increase operation efficiency at the intersections

    The Oxidation Process and Methods for Improving Reactivity of Al

    No full text
    Aluminum (Al) has been widely used in micro-electromechanical systems (MEMS), polymer bonded explosives (PBXs) and solid propellants. Its typical core-shell structure (the inside active Al core and the external alumina (Al2O3) shell) determines its oxidation process, which is mainly influenced by oxidant diffusion, Al2O3 crystal transformation and melt-dispersion of the inside active Al. Consequently, the properties of Al can be controlled by changing these factors. Metastable intermixed composites (MICs), flake Al and nano Al can improve the properties of Al by increasing the diffusion efficiency of the oxidant. Fluorine, Titanium carbide (TiC), and alloy can crack the Al2O3 shell to improve the properties of Al. Furthermore, those materials with good thermal conductivity can increase the heat transferred to the internal active Al, which can also improve the reactivity of Al. Now, the integration of different modification methods is employed to further improve the properties of Al. With the ever-increasing demands on the performance of MEMS, PBXs and solid propellants, Al-based composite materials with high stability during storage and transportation, and high reactivity for usage will become a new research focus in the future
    corecore